PIPP Phase I: Real-time Analytics to Monitor and Predict Emerging Plant Disease
PIPP 第一阶段:实时分析监测和预测新发植物病害
基本信息
- 批准号:2200038
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Plant disease outbreaks are increasing and threatening food security for the vulnerable in many areas of the world and in the US. A stable, nutritious food supply is needed to both lift people out of poverty and improve health outcomes. Plant diseases cause crop losses from 20% to 30% in staple food crops. Plant diseases, both common and recently emerging, are spreading and exacerbated by climate change, transmission with global food trade networks, and emergence of new strains that may be difficult to control. This team of researchers will develop better ways to detect and predict when and where plant diseases will emerge. This research will characterize how human attitudes and social behavior of stakeholders impacts plant disease transmission and adoption of sensor, surveillance and disease prediction technologies. The team will engage a diverse group of postdoctoral associates, graduate students and research staff through research and workshop participation and foster partnerships for a future Plant Disease Pandemic Preparedness Center.Prediction of plant disease pandemics is unreliable due to the lack of real-time detection, surveillance, and data analytics to inform decision-making and prevent spread. This is the grand challenge that the convergence research team will tackle in this Predictive Intelligence for Pandemic Prevention (PIPP) planning grant. In order to improve pandemic prediction and tackle this grand challenge, a new set of predictive tools is needed. In the PIPP Phase I project, the multidisciplinary team will develop a pandemic prediction system called the “Plant Aid Database (PAdb)” that links pathogen detection by in-situ plant disease sensors and remote sensing of crop health, genomic surveillance, real-time spatial and temporal data analytics and climate data to develop predictive simulations of plant disease pandemics. The team plans to validate the PAdb using several model plant pathogens including novel lineages of Phytophthora infestans and the cucurbit downy mildew pathogen Pseudoperonospora cubensis. They plan to engage a broad group of stakeholders including scientists, growers, extension specialists, the USDA APHIS Plant Protection and Quarantine personnel, the Department of Homeland Security inspectors, and diagnosticians in the National Plant Diagnostic Network in a Pandemic Preparedness workshop. Differences in response and spread of pathogens and stakeholder experiences will be examined using current methods and the aid of the new PAdb.This award is supported by the cross-directorate Predictive Intelligence for Pandemic Prevention Phase I (PIPP) program, which is jointly funded by the Directorates for Biological Sciences (BIO), Computer Information Science and Engineering (CISE), Engineering (ENG) and Social, Behavioral and Economic Sciences (SBE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
植物病害的爆发正在增加,威胁着世界许多地区和美国弱势群体的粮食安全。 需要稳定、有营养的粮食供应来帮助人们摆脱贫困并改善健康状况。植物病害导致主食作物损失20%至30%。常见和新近出现的植物疾病正在蔓延,并因气候变化、全球粮食贸易网络的传播以及可能难以控制的新菌株的出现而加剧。该研究小组将开发更好的方法来检测和预测植物疾病何时何地出现。这项研究将描述人类的态度和利益相关者的社会行为如何影响植物疾病的传播和传感器,监测和疾病预测技术的采用。 该团队将通过参与研究和研讨会,吸引不同的博士后、研究生和研究人员,并为未来的植物疾病大流行防范中心培养合作伙伴关系。由于缺乏实时检测、监测和数据分析,植物疾病大流行的预测是不可靠的,无法为决策提供信息并防止传播。这是融合研究团队将在大流行预防预测智能(PIPP)规划拨款中解决的重大挑战。为了改善大流行预测并应对这一重大挑战,需要一套新的预测工具。在PIPP第一阶段项目中,多学科团队将开发一个名为“植物援助数据库(PAdb)”的大流行预测系统,该系统将通过原位植物疾病传感器进行病原体检测和作物健康遥感,基因组监测,实时时空数据分析和气候数据,以开发植物疾病大流行的预测模拟。该团队计划使用几种模式植物病原体来验证PAdb,包括致病疫霉和葫芦科霜霉病病原体黄瓜霜霉病菌的新谱系。他们计划在一个大流行准备研讨会上邀请广泛的利益相关者,包括科学家、种植者、推广专家、美国农业部动植物检疫局植物保护和检疫人员、国土安全部检查员和国家植物诊断网络的诊断专家。将使用当前的方法和新的PAdb的帮助来检查病原体和利益相关者经验的响应和传播的差异。该奖项由跨部门的大流行病预防阶段预测情报(PIPP)计划支持,该计划由生物科学(BIO),计算机信息科学与工程(CISE),工程(ENG)和社会,行为和经济科学(SBE)。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CRISPR‐Cas Biochemistry and CRISPR‐Based Molecular Diagnostics
CRISPR-Cas 生物化学和基于 CRISPR-的分子诊断
- DOI:10.1002/anie.202214987
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Weng, Zhengyan;You, Zheng;Yang, Jie;Mohammad, Noor;Lin, Mengshi;Wei, Qingshan;Gao, Xue;Zhang, Yi
- 通讯作者:Zhang, Yi
Understanding the genotypic and phenotypic structure and impact of climate on Phytophthora nicotianae outbreaks on potato and tomato in the eastern US
了解基因型和表型结构以及气候对美国东部马铃薯和番茄疫霉爆发的影响
- DOI:10.1094/phyto-11-22-0411-r
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Saville, Amanda;McGrath, Margaret;Jones, Christopher;Polo, John;Ristaino, Jean B.
- 通讯作者:Ristaino, Jean B.
Plant pest invasions, as seen through news and social media
- DOI:10.1016/j.compenvurbsys.2022.101922
- 发表时间:2022-12-28
- 期刊:
- 影响因子:6.8
- 作者:Tateosian,Laura G.;Saffer,Ariel;Shukunobe,Makiko
- 通讯作者:Shukunobe,Makiko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jean Ristaino其他文献
Jean Ristaino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jean Ristaino', 18)}}的其他基金
IRES in Tropical Plant Pathology with NC State University and the Universidad de Costa Rica
与北卡罗来纳州立大学和哥斯达黎加大学合作开展热带植物病理学 IRES 项目
- 批准号:
0966530 - 财政年份:2010
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
U.S-Costa Rica Course: A Trainingship Program in Tropical Plant Pathology
美国-哥斯达黎加课程:热带植物病理学培训计划
- 批准号:
0649767 - 财政年份:2006
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SGER: Tracking Ancient Epidemics: Survey of Plant Pathogens of Preceramic Peru
SGER:追踪古代流行病:陶瓷时代前的秘鲁植物病原体调查
- 批准号:
9417791 - 财政年份:1994
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: Testing computational feasibility and effectiveness of real time traffic nearcast for wildfire evacuation at the wildland urban interface
SBIR 第一阶段:测试荒地城市界面野火疏散实时交通近播的计算可行性和有效性
- 批准号:
2322210 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SBIR Phase II: A Blockchain Ecosystem for Encrypting Real World Data and Developing Artificial Intelligence to Optimize Pharmacy Prior Authorization
SBIR 第二阶段:用于加密现实世界数据和开发人工智能以优化药房预授权的区块链生态系统
- 批准号:
2200163 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
SBIR Phase II: Real-time computer automated identification and quantification of insects entering the SolaRid insect control device (ICD)
SBIR 第二阶段:实时计算机自动识别和量化进入 SolaRid 昆虫控制装置 (ICD) 的昆虫
- 批准号:
2247237 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Real-Time Allergen Detection Technology for Dietary Proteins Transferred to Human Milk
SBIR 第一阶段:转移到母乳中的膳食蛋白的实时过敏原检测技术
- 批准号:
2321861 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
IUCRC Phase II UMBC: Center for Accelerated Real time Analytics (CARTA)
IUCRC 第二阶段 UMBC:加速实时分析中心 (CARTA)
- 批准号:
2310844 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
Towards the real-time analysis of phase transition
迈向相变的实时分析
- 批准号:
23K17687 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
IUCRC Phase II University of Miami: Center for Accelerated Real Time Analytics (CARTA)
IUCRC 第二阶段迈阿密大学:加速实时分析中心 (CARTA)
- 批准号:
2310807 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
SBIR Phase I: Real-Time Artificial Intelligence (AI) Bidirectional American Sign Language (ASL) Communication System
SBIR第一阶段:实时人工智能(AI)双向美国手语(ASL)通信系统
- 批准号:
2213235 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
SBIR Phase I: A real-time precision nutrient analysis and management system for hydroponic farming operations
SBIR 第一阶段:用于水培农业作业的实时精确养分分析和管理系统
- 批准号:
2210046 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Standard Grant
Center: IUCRC Phase II Rutgers University: Center for Accelerated and Real Time Analytics (CARTA)
中心:IUCRC 第二阶段 罗格斯大学:加速和实时分析中心 (CARTA)
- 批准号:
2310966 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant