Excellence in Research: PathoRadi ‒ an interactive web server for AI-assisted radiologic-pathologic image analysis, correlation and visualization
卓越研究:PathoRadi — 用于人工智能辅助放射病理图像分析、关联和可视化的交互式网络服务器
基本信息
- 批准号:2200585
- 负责人:
- 金额:$ 65.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Radiological imaging is a critical part of healthcare services which physicians rely heavily upon in the medical decision-making process. A major goal of modern radiology and imaging sciences is to exploit specialized biophysical modeling that simulates the biological process in the living tissue to generate sensitive imaging contrast for disease detection. In order to understand the relations between the simulated image contrast and the underlying pathophysiology, radiologic-pathologic image analysis has to be performed to validate the image correlations in tissue structure, pathology and disease characteristics. Given the complex microenvironments in the tissues, comparison of radiologic and pathologic images is particularly challenging. Many of the routine analyses in the laboratories largely depend on manual or semi-automatic counting and segmentation of cells and tissues in the “gold standard” pathological images using commercially available software that are designed for general purposes. Researchers often have to give up an ample amount of information that shows in the pathological images but not quantifiable using the existing methods. This project aims to close the gap by utilizing deep learning methodology to extract the important features in the radiological and pathological images for quantitative analysis of the correlations previously unattainable in the community. To address the challenges that persist in comparing radiologic and pathologic images, the technical aims of the project are divided into three aspects: (1) deep learning algorithms for quantifying cell morphological phenotypes in the whole brain sections, (2) a graphical and interactive statistic toolbox to visualize the radiologic-pathologic image correlation analysis, (3) a website-as-a-service software package that implements computer-aided image analysis and database for radiologic-pathologic correlations in a user-friendly platform. The project outcome provides a novel deep learning methodology that can be used to standardize the benchmark evaluations in the development of radiological imaging biomarkers. The award enhances the graduate and undergraduate STEM education at the Howard University, with supports to a diverse and underrepresented cohort of the students in the biology and mathematics majors, through the use of cutting-edge artificial intelligence in the field of bioimaging research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
放射成像是医疗保健服务的重要组成部分,医生在医疗决策过程中严重依赖于它。现代放射学和成像科学的主要目标是利用专门的生物物理建模,其模拟活组织中的生物过程以生成用于疾病检测的灵敏成像对比度。为了理解模拟图像对比度与潜在病理生理之间的关系,必须执行放射病理图像分析以验证组织结构、病理和疾病特征中的图像相关性。鉴于组织中复杂的微环境,放射学和病理学图像的比较特别具有挑战性。实验室中的许多常规分析在很大程度上依赖于使用为通用目的设计的市售软件对“金标准”病理图像中的细胞和组织进行手动或半自动计数和分割。研究人员往往不得不放弃大量的信息,显示在病理图像,但不能量化使用现有的方法。该项目旨在通过利用深度学习方法来提取放射学和病理学图像中的重要特征,以定量分析以前在社区中无法实现的相关性,从而缩小差距。为了应对在比较放射学和病理学图像方面持续存在的挑战,该项目的技术目标分为三个方面:(1)用于量化全脑切片中的细胞形态表型的深度学习算法,(2)用于可视化放射学-病理学图像相关性分析的图形和交互式统计工具箱,(3)一个网站即服务软件包,在一个用户友好的平台上实现计算机辅助图像分析和数据库,用于放射病理学相关性。该项目成果提供了一种新的深度学习方法,可用于标准化放射成像生物标志物开发中的基准评估。该奖项加强了霍华德大学的研究生和本科生STEM教育,支持生物学和数学专业多样化和代表性不足的学生群体,通过切割-该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of Activated Microglia by Convolutional Neural Networks
卷积神经网络对激活的小胶质细胞进行分类
- DOI:10.1109/biocas54905.2022.9948635
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hsu, Chao-Hsiung;Agaronyan, Artur;Katherine, Raffensperger;Kadden, Micah;Ton, Hoai T.;Wu, Frank;Lin, Yu-Shun;Lee, Yih-Jing;Wang, Paul C.;Shoykhet, Michael
- 通讯作者:Shoykhet, Michael
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsang-Wei Tu其他文献
<strong>BIOMARKERS FOR BIOCHEMICAL, PATHOPHYSIOLOGICAL, AND NEUROLOGICAL EFFECTS OF HIGH AMMONIA ON THE BRAIN</strong>
- DOI:
10.1016/j.ymgme.2023.107395 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:
- 作者:
Ljubica Caldovic;Tina Li;Parthasarathy Sonaimuthu;Nathan Smith;Judy Liu;Joseph Scafidi;Tsang-Wei Tu;Chao-Hsiung Hsu;Artur Agaronyan;Hiroki Morizono;Andrea Gropman;Nicholas Ah. Mew - 通讯作者:
Nicholas Ah. Mew
strongBIOMARKERS FOR BIOCHEMICAL, PATHOPHYSIOLOGICAL, AND NEUROLOGICAL EFFECTS OF HIGH AMMONIA ON THE BRAIN/strong
强生物标志物用于高氨对大脑的生化、病理生理和神经学影响
- DOI:
10.1016/j.ymgme.2023.107395 - 发表时间:
2023-03-01 - 期刊:
- 影响因子:3.500
- 作者:
Ljubica Caldovic;Tina Li;Parthasarathy Sonaimuthu;Nathan Smith;Judy Liu;Joseph Scafidi;Tsang-Wei Tu;Chao-Hsiung Hsu;Artur Agaronyan;Hiroki Morizono;Andrea Gropman;Nicholas Ah. Mew - 通讯作者:
Nicholas Ah. Mew
StainAI: quantitative mapping of stained microglia and insights into brain-wide neuroinflammation and therapeutic effects in cardiac arrest
StainAI:染色小胶质细胞的定量图谱以及对心脏骤停全脑神经炎症和治疗效果的见解
- DOI:
10.1038/s42003-025-07926-y - 发表时间:
2025-03-20 - 期刊:
- 影响因子:5.100
- 作者:
Chao-Hsiung Hsu;Yi-Yu Hsu;Be-Ming Chang;Katherine Raffensperger;Micah Kadden;Hoai T. Ton;Essiet-Adidiong Ette;Stephen Lin;Janiya Brooks;Mark W. Burke;Yih-Jing Lee;Paul C. Wang;Michael Shoykhet;Tsang-Wei Tu - 通讯作者:
Tsang-Wei Tu
Structural connectome analysis in a piglet model of chronic hypoxia.
慢性缺氧仔猪模型的结构连接组分析。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
1.Van LaVan Lam;Jingang Li;Artur Agaronyan;Stephen Lin;Stephen Xu;Ameya Sinha;Tsang-Wei Tu;Nobuyuki Ishibashi - 通讯作者:
Nobuyuki Ishibashi
Automatic parcellation of anatomical structures based on a high-resolution diffusion tensor imaging in the developing pig brain
基于发育中猪脑高分辨率扩散张量成像的解剖结构自动分割
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Jingang Li;Tsang-Wei Tu;Chao-Hsiung Hsu;Artur Agaronyan;Van Lam;Katie Lydic;Athena Davis;Paul C Wang;Andreia V Faria;Susumu Mori;Richard Jonas;Nobuyuki Ishibashi - 通讯作者:
Nobuyuki Ishibashi
Tsang-Wei Tu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsang-Wei Tu', 18)}}的其他基金
Catalyst Project: Quantification of immunohistochemistry images of neuroglia
催化剂项目:神经胶质细胞免疫组织化学图像的量化
- 批准号:
2200489 - 财政年份:2022
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Cooperative Agreement
Doctoral Dissertation Research: How New Legal Doctrine Shapes Human-Environment Relations
博士论文研究:新法律学说如何塑造人类与环境的关系
- 批准号:
2315219 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
- 批准号:
2335762 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
- 批准号:
2336132 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Standard Grant
CyberCorps Scholarship for Service: Building Research-minded Cyber Leaders
CyberCorps 服务奖学金:培养具有研究意识的网络领导者
- 批准号:
2336409 - 财政年份:2024
- 资助金额:
$ 65.11万 - 项目类别:
Continuing Grant