Excellence in Research: Artificial Intelligence Aided Metasurface Design and Application in Next Generation of Cellular Communication Systems

卓越研究:人工智能辅助超表面设计及其在下一代蜂窝通信系统中的应用

基本信息

  • 批准号:
    2200640
  • 负责人:
  • 金额:
    $ 42.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The radio propagation environment is typically viewed as an uncontrolled and unpredictable aspect in the current wireless communication system paradigm. Because of the unpredictable changes in the radio environment, signal transmission encounters reflections, diffractions, and scattering before arriving at the receiver with numerous copies of attenuated and delayed components. This project will explore how to design an intelligent reflecting surface (IRS) comprised of metamaterials to deploy in the next generation of cellular communication systems to tune the wireless environment and hence achieve intelligent and reconfigurable wireless channels to increase network throughput and energy efficiencies. IRS is typically a flat surface made of a large number of passive reflecting elements (PREs), each of which can generate a regulated change in the amplitude and phase of the incoming signal separately. As a result, electromagnetic waves emanating from the transmitter nodes can be reflected by IRS in a manner that allows them to take advantage of a more favorable propagation environment en route to the reception nodes. By densely deploying IRSs in wireless networks and intelligently coordinating their reflections, wireless systems can increase the likelihood of achieving a line-of-sight (LOS) propagation path between transmitter and receiver nodes while minimizing the impact of co-channel and inter-cell interference and optimizing the energy efficiency of the communication system. However, a successful accomplishment of an IRS-aided communication system requires considering coherent design factors jointly from wireless communications and electromagnetic modeling of devices. The results and analysis conducted in this project will allow electromagnetics, multiphysics, and wireless communication researchers to extend the developed idea to application scenarios.This project will design, develop, and analyze artificial intelligence (AI) driven innovative approaches to address fundamental challenges inherent to baseband signal processing at transmitter and receiver for IRS-aided communication systems. The capability of reconfigurable technologies and novel metasurfaces will be integrated to design and apply new IRS devices by developing a comprehensive and innovative numerical modeling and simulation framework. To enhance the network throughput for an IRS-aided next-generation cellular communication system, cross-functional resource allocation schemes will be proposed by considering design constraints from wireless communications and device physics. Both narrowband and wideband channels will be regarded to conduct this systematic investigation, and novel design approaches will be proposed that perform close to theoretical performance while addressing practical design constraints. The proposed methods will be implemented in a simulation framework and compared with the state-of-the-art approaches to show their effectiveness in wireless communication systems. These research works will encourage efficient system design and algorithm development for the next generation of cellular communication systems and assist product and algorithm engineers and researchers utilizing IRS.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当前无线通信系统范例中,无线电传播环境通常被视为不受控制和不可预测的方面。由于无线电环境中不可预测的变化,信号传输在到达接收器之前会遇到反射、衍射和散射,其中包含许多衰减和延迟分量的副本。该项目将探索如何设计由超材料组成的智能反射表面(IRS),以部署在下一代蜂窝通信系统中,以调整无线环境,从而实现智能和可重新配置的无线信道,以提高网络吞吐量和能源效率。IRS通常是由大量无源反射元件(PRE)制成的平坦表面,每个无源反射元件可以分别产生传入信号的幅度和相位的调节变化。结果,从发射机节点发出的电磁波可以被IRS以允许它们在去往接收节点的途中利用更有利的传播环境的方式反射。通过在无线网络中密集部署IRS并智能协调其反射,无线系统可以增加在发射机和接收机节点之间实现视线(LOS)传播路径的可能性,同时最大限度地减少同频和小区间干扰的影响并优化通信系统的能源效率。然而,一个IRS辅助通信系统的成功完成需要考虑一致的设计因素,从无线通信和设备的电磁建模。该项目的成果和分析将使电磁学、多物理场和无线通信研究人员能够将开发的思想扩展到应用场景。该项目将设计、开发和分析人工智能(AI)驱动的创新方法,以解决IRS辅助通信系统发射机和接收机基带信号处理所固有的根本挑战。可重构技术和新型元表面的能力将通过开发全面和创新的数值建模和仿真框架来集成到设计和应用新的IRS器件中。为了提高IRS辅助下一代蜂窝通信系统的网络吞吐量,将提出跨功能的资源分配方案,考虑无线通信和设备物理的设计约束。窄带和宽带信道将被视为进行这种系统的调查,并提出新的设计方法,执行接近理论性能,同时解决实际的设计约束。所提出的方法将在仿真框架中实现,并与最先进的方法进行比较,以显示其在无线通信系统中的有效性。这些研究工作将鼓励下一代蜂窝通信系统的有效系统设计和算法开发,并帮助产品和算法工程师以及研究人员利用IRS。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Imtiaz Ahmed其他文献

Digital pathology for reporting histopathology samples, including cancer screening samples – definitive evidence from a multisite study
用于报告组织病理学样本(包括癌症筛查样本)的数字病理学——来自多中心研究的明确证据
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    A. Azam;Y. Tsang;Jenny Thirlwall;Peter K Kimani;Shatrughan Sah;K. Gopalakrishnan;Clinton Boyd;Maurice B Loughrey;Paul J Kelly;David P Boyle;Manuel Salto;David Clark;Ian O Ellis;Mohammad Ilyas;Emad A Rakha;Adam Bickers;Ian S D Roberts;Maria Fernanda Soares;Desley A H Neil;A. Takyi;Sinthuri Raveendran;E. Hero;H. Evans;Rania Osman;Khunsha Fatima;Rhian W Hughes;Stuart A McIntosh;Gordon W Moran;Jacobo Ortiz;N. Rajpoot;Ben Storey;Imtiaz Ahmed;Janet A. Dunn;L. Hiller;David R. J. Snead
  • 通讯作者:
    David R. J. Snead
Gemini-the most powerful LLM: Myth or Truth
双子座-最强大的LLM:神话还是真相
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Imtiaz Ahmed;Raisa Islam
  • 通讯作者:
    Raisa Islam
Comparative study of multiscale entropy analysis and symbolic time series analysis when applied to human gait dynamics
多尺度熵分析与符号时间序列分析应用于人体步态动力学的比较研究
Binary Gaussian Copula Synthesis: A Novel Data Augmentation Technique to Advance ML-based Clinical Decision Support Systems for Early Prediction of Dialysis Among CKD Patients
二元高斯 Copula 合成:一种新的数据增强技术,可推进基于 ML 的临床决策支持系统,以早期预测 CKD 患者的透析情况
  • DOI:
    10.48550/arxiv.2403.00965
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Khosravi;Srinjoy Das;Abdullah Al;Imtiaz Ahmed
  • 通讯作者:
    Imtiaz Ahmed
Exploring Hf-mediated surface engineering to enhance Cosub3/subOsub4/sub/Agsub2/subS core-shell nanorods as bifunctional electrocatalysts for water splitting reaction
探索铪(Hf)介导的表面工程以增强Co₃O₄/Ag₂S核壳纳米棒作为水分解反应的双功能电催化剂
  • DOI:
    10.1016/j.fuel.2025.134752
  • 发表时间:
    2025-07-15
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Ritu Raj;Imtiaz Ahmed;Gajendra Prasad Singh;Krishna Kanta Haldar
  • 通讯作者:
    Krishna Kanta Haldar

Imtiaz Ahmed的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Imtiaz Ahmed', 18)}}的其他基金

Excellence in Research/Collaborative Research: Modeling Transportation Choices Under the Presence of Real-time Information Using Simulated-based Virtual Experiments
卓越的研究/合作研究:使用基于模拟的虚拟实验在实时信息存在下对交通选择进行建模
  • 批准号:
    2200633
  • 财政年份:
    2022
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: Enabling Secured and Artificial Intelligence Assisted Cell-Free Communications
合作研究:CISE-MSI:RCBP-RF:CNS:实现安全和人工智能辅助的无细胞通信
  • 批准号:
    2219657
  • 财政年份:
    2022
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
Research Initiation Award: Investigation and Design of Terahertz Communication Systems with Artificial Intelligence
研究启动奖:人工智能太赫兹通信系统研究与设计
  • 批准号:
    2200626
  • 财政年份:
    2022
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Conference: Artificial Intelligence Summer School for Computer Science and Operations Research Education; College Park, Maryland; 19-24 May 2024
会议:计算机科学和运筹学教育人工智能暑期学校;
  • 批准号:
    2408982
  • 财政年份:
    2024
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342747
  • 财政年份:
    2024
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
合作研究:用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
  • 批准号:
    2343606
  • 财政年份:
    2024
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
Conference: ART@SC24: Artificial intelligence, Research computing and Training SC24 pre-conference workshop
会议:ART@SC24:人工智能、研究计算和培训 SC24 会前研讨会
  • 批准号:
    2425405
  • 财政年份:
    2024
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
CAREER: How Collaboration and Competition Influence Research in the Emerging Field of Artificial Intelligence
职业:合作和竞争如何影响人工智能新兴领域的研究
  • 批准号:
    2337564
  • 财政年份:
    2024
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342748
  • 财政年份:
    2024
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
Collaborative Research: A Semiconductor Curriculum and Learning Framework for High-Schoolers Using Artificial Intelligence, Game Modules, and Hands-on Experiences
协作研究:利用人工智能、游戏模块和实践经验为高中生提供半导体课程和学习框架
  • 批准号:
    2342746
  • 财政年份:
    2024
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Black Girls as Creators: an intersectional learning ecosystem toward gendered racial equity in Artificial Intelligence education
合作研究:黑人女孩作为创造者:人工智能教育中实现性别种族平等的交叉学习生态系统
  • 批准号:
    2315041
  • 财政年份:
    2023
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: Black Girls as Creators: an intersectional learning ecosystem toward gendered racial equity in Artificial Intelligence education
合作研究:黑人女孩作为创造者:人工智能教育中实现性别种族平等的交叉学习生态系统
  • 批准号:
    2315043
  • 财政年份:
    2023
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Continuing Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
  • 批准号:
    2326198
  • 财政年份:
    2023
  • 资助金额:
    $ 42.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了