Data in Space and Time: Supporting Learners in Understanding and Analyzing Spatiotemporal Data
时空数据:支持学习者理解和分析时空数据
基本信息
- 批准号:2201154
- 负责人:
- 金额:$ 149.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-15 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many of society’s biggest dilemmas and grandest opportunities involve extensive interpretation of complex data that vary across both space and time. Such spatio-temporal (ST) data stand at the forefront of the most critical decisions across practically all sectors of society, from making sense of changes in the climate and responses to the causes of socioeconomic differences to the understanding of global economic changes. Over the past few decades, analyzing and interpreting ST data has moved from the purview of niche domains to a necessary skill for citizens and workers alike. Hence, the need to prepare learners to work with such data has grown to the same level of urgency. Skills at analyzing and interpreting ST data cannot be left to begin in undergraduate study or learned during workplace training. However, despite the growing importance of such data in industry and society, the STEM education field's understanding of how learners come to make sense of ST data remains severely limited. Fortunately, emerging research and techniques offer promise for improving this understanding. Drawing upon existing research into visual and spatial understanding, cognitive interpretation of time, and technology-based tools and techniques, this project will identify how learners approach and make sense of ST data. In doing so, the project will produce a guiding framework outlining fruitful directions for future research and actionable principles for the development of curricula and instructional materials that aim to engage learners in exploring ST data.Three objectives guide this project as it aims to understand how secondary school learners make sense of spatio-temporal data. First is to compile an inventory of existing knowledge about learners’ understanding of ST data and analyzing students’ approaches to ST data. Second is to develop and test supports and affordances in an iterative process that addresses identified challenges and opportunities. Third, and finally, is to define and disseminate a framework identifying cognitive challenges and related supports for learning with and about ST data. The project will conduct use-inspired basic research to examine learners’ approaches and sense-making via three related lines of investigation: 1) What strategies learners use to make sense of the data and what challenges different data types pose? 2) How learners come to identify and understand patterns and relationships within such data and what challenges different pattern types pose? 3) What understandings do learners construct when engaging with ST data and in what ways technology-based affordances can help support learners in analyzing or constructing understanding from such data? Adopting a design-based research approach employing a combination of think-aloud protocols, retrospective interviews, and data skills assessment, the project will create and disseminate a framework that identifies struggles faced by learners confronting varying types of ST datasets, highlights user interface affordances and data visualization approaches with potential for addressing these struggles, and draws actionable connections between the two.This project is supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field. Investments are made in critical areas that are essential, broad and enduring: STEM learning and STEM learning environments, broadening participation in STEM, and STEM workforce development. The program supports the accumulation of robust evidence to inform efforts to understand, build theory to explain, and suggest intervention and innovations to address persistent challenges in education.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会上许多最大的困境和最大的机会都涉及对跨空间和时间变化的复杂数据的广泛解释。这种时空(ST)数据站在社会几乎所有部门最关键决策的最前沿,从了解气候变化和应对社会经济差异的原因到理解全球经济变化。在过去的几十年里,分析和解释ST数据已经从利基领域的范围转移到公民和工人的必要技能。因此,让学习者做好使用这些数据的准备的必要性已经达到了同样的紧迫程度。分析和解释ST数据的技能不能从本科学习开始或在工作场所培训中学习。然而,尽管这些数据在工业和社会中的重要性越来越大,但STEM教育领域对学习者如何理解ST数据的理解仍然非常有限。幸运的是,新兴的研究和技术为改善这种理解提供了希望。利用现有的研究到视觉和空间的理解,时间的认知解释,以及基于技术的工具和技术,该项目将确定学习者如何处理和理解ST数据。在这样做的过程中,该项目将产生一个指导框架,概述了富有成效的方向,为未来的研究和可操作的原则,旨在让学习者在探索ST data.Three目标的课程和教学材料的发展,指导这个项目,因为它的目的是了解中学学生的时空数据的意义。首先是编制一份关于学习者对ST数据理解的现有知识清单,并分析学生对ST数据的理解方式。第二是在一个迭代过程中开发和测试支持和启示,以应对已确定的挑战和机遇。第三,也是最后一点,是确定和传播一个框架,确定认知挑战和相关的支持,学习与ST数据。该项目将进行使用启发的基础研究,通过三个相关的调查线来检查学习者的方法和意义的形成:1)学习者使用什么策略来理解数据,以及不同的数据类型带来了什么挑战?2)学习者如何识别和理解这些数据中的模式和关系,以及不同模式类型带来的挑战?3)学习者在接触科技数据时会构建什么样的理解?基于技术的启示以何种方式帮助学习者分析或构建对这些数据的理解?该项目采用基于设计的研究方法,结合有声思维协议、回顾性访谈和数据技能评估,将创建和传播一个框架,识别学习者面对不同类型的ST数据集时所面临的困难,突出用户界面功能和数据可视化方法,这些方法有可能解决这些困难,该项目得到了美国国家科学基金会EHR核心研究(ECR)项目的支持。ECR计划强调基础STEM教育研究,产生该领域的基础知识。投资是在关键领域是必不可少的,广泛的和持久的:干学习和干学习环境,扩大参与干,干劳动力发展。该计划支持积累强有力的证据,为理解、建立理论解释、提出干预和创新建议以应对教育中持续存在的挑战提供信息。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chad Dorsey其他文献
How does Bayesian knowledge tracing model emergence of knowledge about a mechanical system?
贝叶斯知识追踪如何对机械系统知识的出现进行建模?
- DOI:
10.1145/2723576.2723587 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hee;G. Gweon;Chad Dorsey;R. Tinker;W. Finzer;Daniel Damelin;Nathan Kimball;A. Pallant;Trudi Lord - 通讯作者:
Trudi Lord
Measuring epistemic knowledge development related to scientific experimentation practice: A construct modeling approach
衡量与科学实验实践相关的认知知识发展:构建建模方法
- DOI:
10.1002/sce.21836 - 发表时间:
2023 - 期刊:
- 影响因子:4.3
- 作者:
Hee;G. Gweon;Aubree Webb;Dan Damelin;Chad Dorsey - 通讯作者:
Chad Dorsey
Teacher Implementation and the Impact of Game-Based Science Curriculum Materials
教师实施和基于游戏的科学课程材料的影响
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.4
- 作者:
Christopher D. Wilson;F. Reichsman;Karen Mutch;A. Gardner;Lisa Marchi;Susan M. Kowalski;Trudi Lord;Chad Dorsey - 通讯作者:
Chad Dorsey
Tracking student progress in a game-like learning environment with a Monte Carlo Bayesian knowledge tracing model
使用蒙特卡洛贝叶斯知识追踪模型在类似游戏的学习环境中跟踪学生的进度
- DOI:
10.1145/2723576.2723608 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
G. Gweon;Hee;Chad Dorsey;R. Tinker;W. Finzer;Daniel Damelin - 通讯作者:
Daniel Damelin
Chad Dorsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chad Dorsey', 18)}}的其他基金
Conference: A Learning Progression for K-12 Data Science Education
会议:K-12 数据科学教育的学习进展
- 批准号:
2325871 - 财政年份:2023
- 资助金额:
$ 149.65万 - 项目类别:
Standard Grant
Contextualizing Data Education via Project-Based Learning
通过基于项目的学习将数据教育情境化
- 批准号:
2200887 - 财政年份:2022
- 资助金额:
$ 149.65万 - 项目类别:
Standard Grant
Collaborative Research: Enhancing Middle Grades Students' Capacity to Develop and Communicate Their Mathematical Understanding of Big Ideas Using Digital Inscriptional Resources
协作研究:提高中年级学生使用数字铭文资源发展和交流对大思想的数学理解的能力
- 批准号:
1620874 - 财政年份:2016
- 资助金额:
$ 149.65万 - 项目类别:
Continuing Grant
InquirySpace 2: Broadening Access to Integrated Science Practices
InquirySpace 2:扩大综合科学实践的机会
- 批准号:
1621301 - 财政年份:2016
- 资助金额:
$ 149.65万 - 项目类别:
Continuing Grant
Guiding Understanding via Information from Digital Environments (GUIDE)
通过数字环境中的信息引导理解 (GUIDE)
- 批准号:
1503311 - 财政年份:2015
- 资助金额:
$ 149.65万 - 项目类别:
Continuing Grant
CAP: Building Partnerships for Education and Speech Research
CAP:建立教育和言语研究合作伙伴关系
- 批准号:
1550800 - 财政年份:2015
- 资助金额:
$ 149.65万 - 项目类别:
Standard Grant
INDP: InquirySpace: Technologies in Support of Student Experimentation
INDP:InquirySpace:支持学生实验的技术
- 批准号:
1147621 - 财政年份:2012
- 资助金额:
$ 149.65万 - 项目类别:
Standard Grant
相似国自然基金
基于非对称k-space算子分解的时空域声波和弹性波隐式有限差分新方法研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
联合QISS和SPACE一站式全身NCE-MRA对原发性系统性血管炎的诊断价值的研究
- 批准号:
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
三维流形的L-space猜想和左可序性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高维space-filling问题及其相关问题
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
难治性焦虑障碍儿童青少年父母基于SPACE 应对技能训练团体干预疗效
- 批准号:20Y11906700
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
Rigged Hilbert Space与Bethe-Salpeter方程框架下强子共振态的理论研究
- 批准号:11975075
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
Space-surface Multi-GNSS机会信号感知植生参数建模与融合方法研究
- 批准号:41974039
- 批准年份:2019
- 资助金额:63.0 万元
- 项目类别:面上项目
基于无线光载射频(Radio over Free Space Optics)技术的分布式天线系统关键技术研究
- 批准号:60902038
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
SPACE-RIP并行磁共振成像算法及其临床应用的研究
- 批准号:30670578
- 批准年份:2006
- 资助金额:28.0 万元
- 项目类别:面上项目
相似海外基金
Advancing Methods to Trace and Contextualize Space-Time Interaction Patterns in Movement Data
改进运动数据中时空交互模式的追踪和情境化方法
- 批准号:
2217460 - 财政年份:2022
- 资助金额:
$ 149.65万 - 项目类别:
Standard Grant
Studies on space, person, and time deixis based on East Africa languages data
基于东非语言数据的时空指示语研究
- 批准号:
22K18479 - 财政年份:2022
- 资助金额:
$ 149.65万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2021
- 资助金额:
$ 149.65万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Proposal: MRA: Using NEON data to elucidate the ecological effects of global environmental change on phenology across time and space
合作提案:MRA:利用 NEON 数据阐明全球环境变化对跨时间和空间物候的生态影响
- 批准号:
2017463 - 财政年份:2021
- 资助金额:
$ 149.65万 - 项目类别:
Standard Grant
Collaborative Proposal: MRA: Using NEON data to elucidate the ecological effects of global environmental change on phenology across time and space
合作提案:MRA:利用 NEON 数据阐明全球环境变化对跨时间和空间物候的生态影响
- 批准号:
2017740 - 财政年份:2021
- 资助金额:
$ 149.65万 - 项目类别:
Standard Grant
Space-time exploration of COVID-19 data and local risk factors in Berlin: the example of the district of Neukölln
柏林 COVID-19 数据和当地风险因素的时空探索:以新克尔恩区为例
- 批准号:
492361591 - 财政年份:2021
- 资助金额:
$ 149.65万 - 项目类别:
Research Grants
Real-time Space Weather forecasting using satellite data and machine learning
使用卫星数据和机器学习进行实时空间天气预报
- 批准号:
2607345 - 财政年份:2021
- 资助金额:
$ 149.65万 - 项目类别:
Studentship
Collaborative Proposal: MRA: Using NEON data to elucidate the ecological effects of global environmental change on phenology across time and space
合作提案:MRA:利用 NEON 数据阐明全球环境变化对跨时间和空间物候的生态影响
- 批准号:
2017785 - 财政年份:2021
- 资助金额:
$ 149.65万 - 项目类别:
Standard Grant
Methods for analysis of space-time data: a Bayesian approach
时空数据分析方法:贝叶斯方法
- 批准号:
RGPIN-2014-06359 - 财政年份:2020
- 资助金额:
$ 149.65万 - 项目类别:
Discovery Grants Program - Individual
New methods of space-time data analysis to operationalise passively collected transport data on the route network
时空数据分析的新方法可操作在路线网络上被动收集的运输数据
- 批准号:
2106782 - 财政年份:2018
- 资助金额:
$ 149.65万 - 项目类别:
Studentship














{{item.name}}会员




