Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
基本信息
- 批准号:2201270
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award provides financial support for U.S.-based participants in two international summer schools in Geometry and Physics (GAP): GAP XVII (2022) to be held at the Pacific Institute for Mathematical Science in Vancouver, Canada during the week May 16-20, 2022 and GAP XVIII (2023) to be held at the Institut Henri Poincaré, in Paris, France during the week May 22-26, 2023. The twofold purpose of the proposed activities are to gather leading experts and early-career researchers working in rapidly developing subjects, and to foster interaction between groups of mathematicians and physicists working on different aspects of related problems; this will facilitate cross-fertilization between different fields and disseminate the most recent results of current research. GAP XVII and GAP XVIII will allow earlier-career mathematicians to disseminate their ideas and to broaden their perspective, both mathematically and internationally. Both summer schools, which will provide the opportunity for researchers to exchange ideas with foreign peers and launch collaborations, will include a poster session for individuals to present their recent work. The theme of both schools is "Higher Structures: Deformations and Homotopy Algebras". GAP XVII (2022) will be devoted to "Deformations" and GAP XVIII (2023) to "Homotopy Algebras". Higher structures has emerged as a new field in mathematics, as well as in mathematical and theoretical physics. Covering many different topics, this field encompasses deformation theory, quantization, homotopy algebras, derived geometry, enumerative geometry, representation theory, Poisson geometry, mirror symmetry, noncommutative algebraic geometry, string theory, and quantum field theory. The event will be devoted to bringing together different aspects of higher structures, in particular deformations and homotopy algebras, as well as identifying new emerging directions of investigation. Deformation theory has become an important area of mathematics. Deformation quantization lies on the boundary between classical and quantum mechanics. Roughly speaking, it is the study and prediction of quantum phenomena, which are normally described by noncommutative associative algebras, from the geometry of their underlying classical counterparts. Homotopy algebras provide a powerful machinery for studying many interconnected questions in different areas of contemporary mathematics and mathematical physics. This award will allow US scholars to abroad to attend these impactful events. For more information on the conference series, see http://www.geometryandphysics.org/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为美国提供财政支持-在几何和物理(GAP)的两个国际暑期学校的基础上的参与者:GAP XVII(2022)将于2022年5月16日至20日在加拿大温哥华的太平洋数学科学研究所举行,GAP XVIII(2023)将于2023年5月22日至26日在法国巴黎的亨利庞加莱研究所举行。拟议的活动有两个目的:一是聚集在迅速发展的学科中工作的顶尖专家和早期职业研究人员,二是促进从事相关问题不同方面工作的数学家和物理学家群体之间的互动;这将促进不同领域之间的相互交流,并传播当前研究的最新成果。GAP XVII和GAP XVIII将允许早期职业数学家传播他们的思想,并拓宽他们的视野,无论是数学还是国际。这两个暑期学校将为研究人员提供与外国同行交流思想和开展合作的机会,并将包括一个海报会议,供个人展示他们最近的工作。这两个学校的主题是“高等结构:变形和同伦代数”。GAP XVII(2022)将致力于“变形”,GAP XVIII(2023)将致力于“同伦代数”。高等结构已经成为数学以及数学和理论物理学中的一个新领域。涵盖许多不同的主题,这个领域包括变形理论,量子化,同伦代数,导出几何,枚举几何,表示论,泊松几何,镜像对称,非交换代数几何,弦理论和量子场论。该活动将致力于汇集高等结构的不同方面,特别是变形和同伦代数,以及确定新的新兴研究方向。变形理论已成为数学的一个重要领域。形变量子化处于经典力学和量子力学的边界上。粗略地说,它是量子现象的研究和预测,通常由非交换结合代数描述,从它们的基础经典对应物的几何。同伦代数为研究当代数学和数学物理的不同领域中许多相互关联的问题提供了强大的工具。 该奖项将允许美国学者到国外参加这些有影响力的活动。 有关会议系列的更多信息,请参阅http://www.geometryandphysics.org/This奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathieu Stienon其他文献
正则库朗代数胚
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.7
- 作者:
陈酌;Mathieu Stienon;Ping Xu - 通讯作者:
Ping Xu
A Hopf algebra associated with a Lie pair
与李对相关的 Hopf 代数
- DOI:
10.1016/j.crma.2014.09.010 - 发表时间:
2014-09 - 期刊:
- 影响因子:0
- 作者:
Zhuo Chen;Mathieu Stienon;Ping Xu - 通讯作者:
Ping Xu
泊松2群
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
陈酌;Mathieu Stienon;Ping Xu - 通讯作者:
Ping Xu
Mathieu Stienon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathieu Stienon', 18)}}的其他基金
Geometry and Physics--Higher structures: derived geometry and quantization
几何与物理--高等结构:派生几何和量子化
- 批准号:
1502290 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Geometry and Physics - Noncommutative Geometry
几何和物理 - 非交换几何
- 批准号:
0965979 - 财政年份:2010
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference: On the Crossroads of Algebra, Geometry, and Physics
会议:代数、几何和物理的十字路口
- 批准号:
2200713 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference on Algebraic Geometry, Mathematical Physics, and Solitons
代数几何、数学物理和孤子会议
- 批准号:
2231173 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference: Integrable systems in geometry and mathematical physics; July 13-17, 2020; Trieste, Italy
会议:几何和数学物理中的可积系统;
- 批准号:
2000628 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference on Enumerative Geometry, Mirror Symmetry, and Physics
枚举几何、镜像对称和物理学会议
- 批准号:
1736228 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Poisson 2014: Summer School and Conference on Poisson Geometry in Mathematics and Physics, July 28-August 8, 2014
Poisson 2014:数学和物理泊松几何暑期学校和会议,2014年7月28日至8月8日
- 批准号:
1405965 - 财政年份:2014
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Geometry and Physics Miami - Brazil - Mexico - Conference
几何与物理迈阿密 - 巴西 - 墨西哥 - 会议
- 批准号:
1201544 - 财政年份:2012
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
The Topology and Geometry of Physics Conference; Lubbock, TX,
物理拓扑与几何会议;
- 批准号:
0837855 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference on Applications of Geometry to Topology and Physics, November 2008, Newark, NJ
几何在拓扑和物理中的应用会议,2008 年 11 月,新泽西州纽瓦克
- 批准号:
0816502 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
International Conference on Geometry and Physics
国际几何与物理会议
- 批准号:
0715543 - 财政年份:2007
- 资助金额:
$ 4万 - 项目类别:
Standard Grant














{{item.name}}会员




