Conference: Geometry and Physics---Deformations, Homotopy Algebras, and Higher Structures
会议:几何与物理——变形、同伦代数和更高结构
基本信息
- 批准号:2201270
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award provides financial support for U.S.-based participants in two international summer schools in Geometry and Physics (GAP): GAP XVII (2022) to be held at the Pacific Institute for Mathematical Science in Vancouver, Canada during the week May 16-20, 2022 and GAP XVIII (2023) to be held at the Institut Henri Poincaré, in Paris, France during the week May 22-26, 2023. The twofold purpose of the proposed activities are to gather leading experts and early-career researchers working in rapidly developing subjects, and to foster interaction between groups of mathematicians and physicists working on different aspects of related problems; this will facilitate cross-fertilization between different fields and disseminate the most recent results of current research. GAP XVII and GAP XVIII will allow earlier-career mathematicians to disseminate their ideas and to broaden their perspective, both mathematically and internationally. Both summer schools, which will provide the opportunity for researchers to exchange ideas with foreign peers and launch collaborations, will include a poster session for individuals to present their recent work. The theme of both schools is "Higher Structures: Deformations and Homotopy Algebras". GAP XVII (2022) will be devoted to "Deformations" and GAP XVIII (2023) to "Homotopy Algebras". Higher structures has emerged as a new field in mathematics, as well as in mathematical and theoretical physics. Covering many different topics, this field encompasses deformation theory, quantization, homotopy algebras, derived geometry, enumerative geometry, representation theory, Poisson geometry, mirror symmetry, noncommutative algebraic geometry, string theory, and quantum field theory. The event will be devoted to bringing together different aspects of higher structures, in particular deformations and homotopy algebras, as well as identifying new emerging directions of investigation. Deformation theory has become an important area of mathematics. Deformation quantization lies on the boundary between classical and quantum mechanics. Roughly speaking, it is the study and prediction of quantum phenomena, which are normally described by noncommutative associative algebras, from the geometry of their underlying classical counterparts. Homotopy algebras provide a powerful machinery for studying many interconnected questions in different areas of contemporary mathematics and mathematical physics. This award will allow US scholars to abroad to attend these impactful events. For more information on the conference series, see http://www.geometryandphysics.org/This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This award provides financial support for U.S.-based participants in two international summer schools in Geometry and Physics (GAP): GAP XVII (2022) to be held at the Pacific Institute for Mathematical Science in Vancouver, Canada during the week May 16-20, 2022 and GAP XVIII (2023) to be held at the Institute Henri Poincaré, in Paris, France during the week May 22-26, 2023. The双重目的GAP XVII和GAP XVIII将允许早期职业数学家传播他们的思想,并在数学和国际上扩大他们的观点。这两家暑期学校都将为研究人员提供与外国同行交流想法的机会,并将包括一个海报会议,以供个人展示其最近的工作。两家学校的主题都是“更高的结构:变形和同型代数”。 GAP XVII(2022)将专门用于“变形”,而GAP XVIII(2023)将用于“同型代数”。较高的结构已成为数学以及数学和理论物理学的新领域。该领域涵盖了许多不同的主题,包括变形理论,量化,同型代数,衍生的几何,枚举,表示理论,泊松几何,镜像对称性,非合法代数几何,弦乐理论,弦理论和量子场理论。该事件将致力于汇集更高结构的不同方面,尤其是变形和同型代数,并确定新的新兴投资方向。变形理论已成为数学的重要领域。变形量化位于经典和量子力学之间的边界。粗略地说,正是量子现象的研究和预测通常由非共同的联想代数从其基本经典对应物的几何形状中描述。同型代数为研究当代数学和数学物理学不同领域的许多相互联系的问题提供了强大的机制。该奖项将使我们学者可以参加这些有影响力的活动。有关会议系列的更多信息,请参见http://www.geometryandphysics.org/this Award反映了NSF的法定使命,并使用基金会的知识分子优点和更广泛的影响评估审查标准,被认为是珍贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathieu Stienon其他文献
正则库朗代数胚
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0.7
- 作者:
陈酌;Mathieu Stienon;Ping Xu - 通讯作者:
Ping Xu
A Hopf algebra associated with a Lie pair
与李对相关的 Hopf 代数
- DOI:
10.1016/j.crma.2014.09.010 - 发表时间:
2014-09 - 期刊:
- 影响因子:0
- 作者:
Zhuo Chen;Mathieu Stienon;Ping Xu - 通讯作者:
Ping Xu
泊松2群
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.5
- 作者:
陈酌;Mathieu Stienon;Ping Xu - 通讯作者:
Ping Xu
Mathieu Stienon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathieu Stienon', 18)}}的其他基金
Geometry and Physics--Higher structures: derived geometry and quantization
几何与物理--高等结构:派生几何和量子化
- 批准号:
1502290 - 财政年份:2015
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Geometry and Physics - Noncommutative Geometry
几何和物理 - 非交换几何
- 批准号:
0965979 - 财政年份:2010
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
奇异黎曼叶状结构的微分几何学研究
- 批准号:12371048
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于拓扑几何学的致密油藏跨尺度润湿机理研究
- 批准号:42102149
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非欧几何学的若干历史问题研究
- 批准号:12161086
- 批准年份:2021
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于代数几何学的统计学习理论研究
- 批准号:12171382
- 批准年份:2021
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference: On the Crossroads of Algebra, Geometry, and Physics
会议:代数、几何和物理的十字路口
- 批准号:
2200713 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference on Algebraic Geometry, Mathematical Physics, and Solitons
代数几何、数学物理和孤子会议
- 批准号:
2231173 - 财政年份:2022
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference: Integrable systems in geometry and mathematical physics; July 13-17, 2020; Trieste, Italy
会议:几何和数学物理中的可积系统;
- 批准号:
2000628 - 财政年份:2020
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conference on Enumerative Geometry, Mirror Symmetry, and Physics
枚举几何、镜像对称和物理学会议
- 批准号:
1736228 - 财政年份:2017
- 资助金额:
$ 4万 - 项目类别:
Standard Grant