Conference: On the Crossroads of Algebra, Geometry, and Physics

会议:代数、几何和物理的十字路口

基本信息

  • 批准号:
    2200713
  • 负责人:
  • 金额:
    $ 4.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

The conference "On the crossroads of Algebra, Geometry, and Physics" will take place May 16-20, 2022 at Yale University. The conference will feature talks on recent developments in several interrelated fields, organized broadly around the themes of algebra, geometry, representation theory, and high energy physics. It will catalyze new interactions between experts in these fields. The conference speakers are leading experts who have made fundamental contributions to the topics above, as well as early-career researchers. Participants with a broad range of backgrounds will benefit from the wide spectrum of topics presented at the conference.The aim of the conference is to present current developments on various aspects of geometric representation theory, including the geometric Langlands program and the geometric aspects of the representation theory of quantum groups; cluster theory including motivic Donaldson-Thomas theory and cluster varieties and mirror symmetry; geometry, including higher Teichmueller theory and hyperbolic geometry; and high energy physics including supersymmetric field theories and deformation quantization. The conference website is available at: https://sites.google.com/view/crossroads2022.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
会议“在代数,几何和物理的十字路口”将于2022年5月16日至20日在耶鲁大学举行。会议将围绕代数、几何、表示论和高能物理等主题,广泛讨论几个相互关联的领域的最新发展。它将促进这些领域专家之间的新互动。会议发言人是对上述主题做出重要贡献的领先专家,以及早期职业研究人员。会议的目的是介绍几何表示理论的各个方面的最新发展,包括几何Langlands纲领和量子群表示理论的几何方面;集团理论,包括motivic Donaldson-Thomas理论和集团簇和镜像对称;几何,包括更高的Teichmueller理论和双曲几何;和高能物理,包括超对称场论和变形量子化。该会议的网站是:https://sites.google.com/view/crossroads2022.This奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ivan Loseu其他文献

Ivan Loseu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ivan Loseu', 18)}}的其他基金

Quantizations and Double Affine Representation Theory
量化和双仿射表示理论
  • 批准号:
    2001139
  • 财政年份:
    2020
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Continuing Grant
Transformation groups 2017
2017年转型团体
  • 批准号:
    1744157
  • 财政年份:
    2017
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Conference "Representation theory and Geometry of symplectic resolutions"
会议“辛分辨率的表示理论和几何”
  • 批准号:
    1507869
  • 财政年份:
    2015
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Standard Grant
Representation Theory of W-Algebras, Rational Cherednik Algebras, and Quantized Quiver Varieties
W-代数、有理 Cherednik 代数和量化箭袋簇的表示论
  • 批准号:
    1501558
  • 财政年份:
    2015
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Continuing Grant
Representation theory of W-algebras, quantum groups, symplectic reflection algebras and quantum Hamiltonian reductions
W-代数、量子群、辛反射代数和量子哈密顿量约简的表示论
  • 批准号:
    1161584
  • 财政年份:
    2012
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: U.S. Crossroads—Connectivity of the North Atlantic Deep Western Boundary Current through the Subpolar-Subtropical Transition Zone
合作研究:美国十字路口——北大西洋深西边界流通过副极地-副热带过渡区的连通性
  • 批准号:
    2318948
  • 财政年份:
    2023
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Continuing Grant
Crossroads: Using decision making strategies to develop high impact content for training in rigor and transparency.
十字路口:使用决策策略来开发高影响力的内容,以进行严格和透明的培训。
  • 批准号:
    10722510
  • 财政年份:
    2023
  • 资助金额:
    $ 4.9万
  • 项目类别:
Transposable Elements at the Crossroads of Evolution, Health and Disease
处于进化、健康和疾病十字路口的转座元件
  • 批准号:
    10750852
  • 财政年份:
    2023
  • 资助金额:
    $ 4.9万
  • 项目类别:
Collaborative Research: U.S. Crossroads—Connectivity of the North Atlantic Deep Western Boundary Current through the Subpolar-Subtropical Transition Zone
合作研究:美国十字路口——北大西洋深西边界流通过副极地-副热带过渡区的连通性
  • 批准号:
    2318947
  • 财政年份:
    2023
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Continuing Grant
CAREER: Discrete Geometry at the crossroads of Combinatorics and Topology
职业:组合学和拓扑学十字路口的离散几何
  • 批准号:
    2237324
  • 财政年份:
    2023
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Continuing Grant
Cellular metabolism at the crossroads of skeletal regeneration
处于骨骼再生十字路口的细胞代谢
  • 批准号:
    10529832
  • 财政年份:
    2022
  • 资助金额:
    $ 4.9万
  • 项目类别:
At the Crossroads of Europe and Asia: Human evolution in the Central Balkans
欧洲和亚洲的十字路口:巴尔干中部地区的人类进化
  • 批准号:
    RGPIN-2019-04113
  • 财政年份:
    2022
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Discovery Grants Program - Individual
Enforcement of competition law in the EU and Japan at a crossroads: an enquiry into the effectiveness of the remedies imposed by competition authorities and the role of private enforcement
处于十字路口的欧盟和日本竞争法的执行:对竞争主管机构实施的补救措施的有效性和私人执法的作用的调查
  • 批准号:
    22K01183
  • 财政年份:
    2022
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neuroimmunometabolism: Obesity at the Crossroads between Neuroimmunity and Immunometabolism
神经免疫代谢:神经免疫和免疫代谢十字路口的肥胖
  • 批准号:
    10540258
  • 财政年份:
    2022
  • 资助金额:
    $ 4.9万
  • 项目类别:
Soliton gas at the crossroads of dispersive and generalised hydrodynamics
孤子气体处于色散和广义流体动力学的十字路口
  • 批准号:
    EP/W032759/1
  • 财政年份:
    2022
  • 资助金额:
    $ 4.9万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了