Geometric Insights in Noncommutative Algebra
非交换代数中的几何见解
基本信息
- 批准号:2201273
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Commutative algebra studies algebraic systems for which the order of multiplication is irrelevant, while noncommutative algebra allows for the possibility that the two products XY and YX may not be the same. Noncommutative algebra historically arose in the algebraic study of symmetry, in linear algebra, and perhaps most profoundly in quantum mechanics. Since the advent of algebraic geometry, commutative algebra has been revolutionized by geometric ideas. In a similar way, the development of noncommutative geometry over the past several decades has stimulated many new ideas and perspectives in noncommutative algebra, but to date it has posed more challenges than it has solved. For instance, many noncommutative algebras are expected to be well-behaved due to the geometric nature of their construction, but we lack the algebraic tools to prove that this is the case. Furthermore, noncommutative geometry largely remains a collection of loosely related frameworks that are not directly compatible with one another, which can make the field especially difficult for newcomers. This project will directly address these fundamental problems by creating new techniques to deduce good algebraic properties for geometrically constructed noncommutative algebras and providing new tools to represent geometric structures corresponding to noncommutative algebras. The project will involve research and training opportunities for graduate students.The first part of this project focuses on homological problems in noncommutative algebraic geometry. The PI and collaborators will use methods of Koszul duality and the representations of finite-dimensional algebras to attack a longstanding conjecture that Artin-Schelter (AS) regular algebras are domains. Related techniques will be used to understand when generalized AS regular algebras that are not necessarily connected, such as graded Calabi-Yau algebras, are prime rings. The second part of this project is focused on spectral problems in noncommutative geometry. The PI will use a variety of approaches to understand noncommutative discrete spaces and utilize them to construct noncommutative spectrum functors for both rings and C*-algebras. Topics to be investigated include structure sheaves for noncommutative spaces, methods to characterize dual coalgebras, discretization of C*-algebras, and a projective representation theory for rings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
换数的代数研究代数系统无关紧要,而非共同代数允许两种产品XY和YX可能不一样的可能性。历史上,非共同代数在对称的代数研究中出现,线性代数,也许是量子力学中最深刻的。自代数几何形状出现以来,几何思想就彻底改变了交换代数。以类似的方式,在过去的几十年中,非交通性几何形状的发展激发了非交通性代数的许多新思想和观点,但迄今为止,它提出的挑战超出了其所解决的挑战。例如,由于其构建的几何特性,预计许多非交通性代数将得到良好的行为,但是我们缺乏代数工具来证明这种情况是这种情况。此外,非共同的几何形状在很大程度上仍然是与彼此不直接兼容的松散相关框架的集合,这对于新移民而言可能使该领域特别困难。该项目将通过创建新技术来直接解决这些基本问题,从而推断出良好的代数属性,用于几何构造的非交通性代数,并提供新工具来表示与非交通性代数相对应的几何结构。该项目将涉及研究生的研究和培训机会。该项目的第一部分着重于非共同代数几何学的同源问题。 PI和合作者将使用Koszul二元性方法以及有限维代数的表示,以攻击长期以来的猜想,即Artin-Schelter(AS)常规代数是域。相关技术将用于理解当不一定连接的常规代数时,例如渐变的卡拉比(Calabi-Yau)代数是主要环。该项目的第二部分集中在非交通性几何形状中的光谱问题上。 PI将使用多种方法来理解非交换空间,并利用它们为环和C*-Algebras构造非交通频谱函数。要研究的主题包括针对非交通空间的结构束线,表征双卵石的方法,C* - algebras的离散化以及戒指的投射代表理论。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和广泛的范围来评估的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Reyes其他文献
Transcatheter Occlusion of Atrial Septal Defects for Prevention of Recurrence of Paradoxical Embolism
经导管封堵房间隔缺损预防反常栓塞复发
- DOI:
10.5772/48071 - 发表时间:
2012 - 期刊:
- 影响因子:1.9
- 作者:
Nicoleta Daraban;Manuel Reyes;R. Smalling - 通讯作者:
R. Smalling
Analytical integrability problem for perturbations of cubic Kolmogorov systems
- DOI:
10.1016/j.chaos.2018.05.011 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Antonio Algaba;Cristóbal García;Manuel Reyes - 通讯作者:
Manuel Reyes
DUAL SCOPE TECHNIQUE WITH RENDEZVOUS RETROGRADE WIRE PASSAGE FOR THE RECONSTRUCTION OF DISCONNECTED ESOPHAGUS
- DOI:
10.1016/j.gie.2024.04.827 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Manuel Reyes;Jonh Pineda-Bonilla - 通讯作者:
Jonh Pineda-Bonilla
TCT-433 Expansion of Ileofemoral Access to <5 mm with Recollapsible Sheath in High Risk TAVR Patients is Feasible with Zero Complication
- DOI:
10.1016/j.jacc.2015.08.448 - 发表时间:
2015-10-13 - 期刊:
- 影响因子:
- 作者:
Walid K. Abu Saleh;Gilbert H. Tang;Hasan Ahmad;Martin Cohen;Cenap Undemir;Steven L. Lansman;Nivas Balasubramaniyam;Manuel Reyes;Colin Barker;Neal Kleiman;Michael J. Reardon;Basel Ramlawi - 通讯作者:
Basel Ramlawi
TAKOTSUBO CARDIOMYOPATHY IN CANCER PATIENTS: TRIGGERS, RECOVERY, AND RESUMPTION OF THERAPY
- DOI:
10.1016/s0735-1097(15)60927-5 - 发表时间:
2015-03-17 - 期刊:
- 影响因子:
- 作者:
Pimprapa Vejpongsa;Jose Banchs;Manuel Reyes;Gloria Iliescu;Matilda Akinyemi;Syed Yusuf;Cezar Iliescu - 通讯作者:
Cezar Iliescu
Manuel Reyes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manuel Reyes', 18)}}的其他基金
SBIR Phase I: A Personalized Search Engine for Educational Resources
SBIR 第一阶段:个性化教育资源搜索引擎
- 批准号:
1345533 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
RUI: Noncommutative polynomial algebras and the foundations of noncommutative geometry
RUI:非交换多项式代数和非交换几何基础
- 批准号:
1407152 - 财政年份:2014
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
冷俯冲带深部碳的储存和运移:基于南天山增生杂岩带中含碳/碳酸盐低温-超高压变质岩研究的见解
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:
当前对星团性质的新见解及其它们深远的影响- - 我们通常认为的单族恒星观念被终结了吗?
- 批准号:11373010
- 批准年份:2013
- 资助金额:90.0 万元
- 项目类别:面上项目
相似海外基金
An innovative platform using ML/AI to analyse farm data and deliver insights to improve farm performance, increasing farm profitability by 5-10%
An%20innovative%20platform%20using%20ML/AI%20to%20analysis%20farm%20data%20and%20deliver%20insights%20to%20improv%20farm%20performance,%20increasing%20farm%20profitability%20by%205-10%
- 批准号:
10093235 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Collaborative R&D
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
- 批准号:
2327267 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Flexible metal-organic frameworks (MOFs) for hydrogen isotope separation: insights into smart recognition of gas molecules towards materials design
用于氢同位素分离的柔性金属有机框架(MOF):深入了解气体分子对材料设计的智能识别
- 批准号:
24K17650 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
- 批准号:
2335597 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Exploring Microbial Light-Harvesting with Rhodopsin in Extreme Polar Environments: Unveiling Distribution, Diversity, and Functional Insights
在极端极地环境中探索利用视紫红质进行微生物光捕获:揭示分布、多样性和功能见解
- 批准号:
24K03072 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Scientific Research (B)