RUI: Noncommutative polynomial algebras and the foundations of noncommutative geometry
RUI:非交换多项式代数和非交换几何基础
基本信息
- 批准号:1407152
- 负责人:
- 金额:$ 12.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A recurring theme in mathematics is that many kinds of geometric spaces can be precisely characterized by the collection of functions defined on the space. These functions can be added and multiplied, forming a structure called an algebra. These algebras of functions are defined in such a way that the product of two functions does not depend upon the order in which they are multiplied, just as in numerical multiplication. But many algebras arising in mathematics and quantum physics are noncommutative, and such algebras do not have a corresponding geometric space (in our current understanding of this term). This project has two related goals: first, to better understand a certain class of algebras that should correspond to quantum versions of ordinary "flat" (affine) spaces, and second, to seek a suitable space-like object that should form the geometric counterpart of a noncommutative algebra. The proposed approach will promote interaction between ring theory, functional analysis, and quantum physics. The PI will involve undergraduate students in this research.This project addresses two objectives in noncommutative algebra that are both related to foundational issues in noncommutative geometry. The first objective is to develop new techniques for the study of skew (or "twisted") Calabi-Yau algebras. These algebras simultaneously generalize two important classes of algebras from noncommutative algebraic geometry: Calabi-Yau algebras and Artin-Schelter regular algebras. Problems to be considered include invariants of actions on these algebras, the structure of these algebras in low dimensions, and duality theory for modules over such algebras. The second objective is to construct a functorial invariant for noncommutative algebras that meaningfully extends the spectrum of commutative rings and algebras. This will build upon rigorous obstructions to several natural candidates for noncommutative spectrum functors. The initial focus will be to extend the Gelfand spectrum functor from commutative to noncommutative C*-algebras.
数学中一个反复出现的主题是,许多类型的几何空间可以通过定义在该空间上的函数的集合来精确地刻画。这些函数可以相加和相乘,形成一种称为代数的结构。这些函数代数的定义方式是,两个函数的乘积不依赖于它们相乘的顺序,就像在数值乘法中一样。但在数学和量子物理中出现的许多代数是非对易的,并且这些代数没有对应的几何空间(在我们目前对这个术语的理解中)。这个项目有两个相关的目标:第一,更好地理解一类代数,它应该对应于普通“平”(仿射)空间的量子版本;第二,寻找一个合适的类似空间的物体,它应该形成非对易代数的几何对应。提出的方法将促进环理论、泛函分析和量子物理之间的相互作用。PI将包括本科生参与这项研究。这个项目解决了非对易代数的两个目标,这两个目标都与非对易几何的基础问题有关。第一个目标是发展研究斜(或“扭曲”)Calabi-Yau代数的新方法。这些代数同时推广了非交换代数几何中的两类重要代数:Calabi-Yau代数和Artin-Schelter正则代数。要考虑的问题包括这些代数上作用的不变量,这些代数在低维上的结构,以及这些代数上的模的对偶理论。第二个目标是为非交换代数构造一个有意义地扩展交换环和代数的谱的函数式不变量。这将建立在对几个自然的非对易谱函子候选者的严格障碍之上。最初的重点将是将Gelfand谱函子从交换C*-代数推广到非交换C*-代数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Reyes其他文献
Transcatheter Occlusion of Atrial Septal Defects for Prevention of Recurrence of Paradoxical Embolism
经导管封堵房间隔缺损预防反常栓塞复发
- DOI:
10.5772/48071 - 发表时间:
2012 - 期刊:
- 影响因子:1.9
- 作者:
Nicoleta Daraban;Manuel Reyes;R. Smalling - 通讯作者:
R. Smalling
DUAL SCOPE TECHNIQUE WITH RENDEZVOUS RETROGRADE WIRE PASSAGE FOR THE RECONSTRUCTION OF DISCONNECTED ESOPHAGUS
- DOI:
10.1016/j.gie.2024.04.827 - 发表时间:
2024-06-01 - 期刊:
- 影响因子:
- 作者:
Manuel Reyes;Jonh Pineda-Bonilla - 通讯作者:
Jonh Pineda-Bonilla
Analytical integrability problem for perturbations of cubic Kolmogorov systems
- DOI:
10.1016/j.chaos.2018.05.011 - 发表时间:
2018-08-01 - 期刊:
- 影响因子:
- 作者:
Antonio Algaba;Cristóbal García;Manuel Reyes - 通讯作者:
Manuel Reyes
Nilpotent Systems Admitting an Algebraic Inverse Integrating Factor over $${{\mathbb{C}}((x,y))}$$
- DOI:
10.1007/s12346-011-0046-9 - 发表时间:
2011-06-08 - 期刊:
- 影响因子:2.100
- 作者:
Antonio Algaba;Cristóbal García;Manuel Reyes - 通讯作者:
Manuel Reyes
TOP-032 Prevalence of the spectrum of steatotic liver disease and associated fibrosis and cirrhosis among adults in the United States
TOP - 032美国成年人脂肪性肝病及其相关纤维化和肝硬化的患病率
- DOI:
10.1016/s0168-8278(25)01757-x - 发表时间:
2025-05-01 - 期刊:
- 影响因子:33.000
- 作者:
James M. Paik;Kathryn Hobbs;Amolika Gupta;Rand Alkalbani;Manuel Reyes;Zobair Younossi - 通讯作者:
Zobair Younossi
Manuel Reyes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manuel Reyes', 18)}}的其他基金
Geometric Insights in Noncommutative Algebra
非交换代数中的几何见解
- 批准号:
2201273 - 财政年份:2022
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
SBIR Phase I: A Personalized Search Engine for Educational Resources
SBIR 第一阶段:个性化教育资源搜索引擎
- 批准号:
1345533 - 财政年份:2014
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
相似海外基金
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
- 批准号:
2350508 - 财政年份:2024
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Model theory of operators and noncommutative function theory
算子模型论和非交换函数论
- 批准号:
23KJ1070 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Continuing Grant
LEAPS-MPS: Noncommutative Geometry and Topology of Quantum Metrics
LEAPS-MPS:量子度量的非交换几何和拓扑
- 批准号:
2316892 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Standard Grant
Analysis of noncommutative rational functions in terms of free probability
用自由概率分析非交换有理函数
- 批准号:
22KJ1817 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topics in noncommutative algebra 2022: homological regularities
2022 年非交换代数专题:同调正则
- 批准号:
2302087 - 财政年份:2023
- 资助金额:
$ 12.75万 - 项目类别:
Continuing Grant
Noncommutative analysis for self-similar structure
自相似结构的非交换分析
- 批准号:
DP220101631 - 财政年份:2022
- 资助金额:
$ 12.75万 - 项目类别:
Discovery Projects
Noncommutative statistical mechanics: probability at the confluence
非交换统计力学:汇合处的概率
- 批准号:
EP/V048902/2 - 财政年份:2022
- 资助金额:
$ 12.75万 - 项目类别:
Research Grant
Noncommutative Algebraic Geometry
非交换代数几何
- 批准号:
RGPIN-2017-04623 - 财政年份:2022
- 资助金额:
$ 12.75万 - 项目类别:
Discovery Grants Program - Individual