CC* Compute: Augmenting a 2,560-core EPYC2 Computational Cluster with GPUs for AI, Machine Learning, and other GPU-Accelerated HPC Applications

CC* 计算:使用 GPU 增强 2,560 核 EPYC2 计算集群,用于人工智能、机器学习和其他 GPU 加速的 HPC 应用

基本信息

  • 批准号:
    2201497
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

This project augments an existing computing cluster at the University of Tennessee Chattanooga (UTC) with 36 NVIDIA A100 80GB Graphical Processing Units (GPUs) for 18 of the existing servers. This upgrade provides over a threefold increase in performance for those computers on many workloads, and even higher speed improvement for certain computational areas, such as artificial intelligence problems. GPUs are the best way, at present, to achieve extremely high computational performance cost-effectively on today's servers, workstations, and desktop systems. Adding GPUs to the existing servers is a straightforward upgrade process. The upgrade enables 13 science drivers, or subprojects, spanning a range of domains and specialties, including researchers at UTC and among collaborating institutions nationwide. Undergraduate and graduate students benefit from using the upgraded computing faculty implemented through this project. The 13 science drivers pursued in this project support current funded and unfunded research in addition to teaching activities for both undergraduate and graduate students. Also, external collaborators at the University of Alabama, University of New Mexico, and Worcester Polytechnic Institute will utilize a significant fraction of this scalable computing resource, usually in collaboration with UTC researchers. Expected users include the more than 40 computational science PhD students at UTC, plus postdocs, Masters students, and undergraduate researchers. The science-driver projects complement existing uses of the cluster while emphasizing GPU-accelerated research and creative activities, which are specifically enabled by the GPU upgrade supported by this funding. These science drivers include: Data-driven Methods for Predictive Intention Models for Drivers and Pedestrians; Above Ground Carbon Sequestration Using GIS and Remote Sensing for Chattanooga; Portable Performance Optimizations for Irregular Communication; Identifying Metabolites from the Data of Tandem Mass Spectrometry; and Molecular Dynamics Simulations of Active Filaments.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目为田纳西大学查塔努加分校(UTC)的现有计算集群增加了36个NVIDIA A100 80GB图形处理单元(gpu),用于18个现有服务器。这次升级使这些计算机在许多工作负载上的性能提高了三倍以上,在某些计算领域(如人工智能问题)的速度提高得更快。目前,gpu是在当今的服务器、工作站和桌面系统上经济高效地实现极高计算性能的最佳方式。为现有服务器添加gpu是一个简单的升级过程。此次升级使13个科学驱动项目或子项目成为可能,涵盖一系列领域和专业,包括联合技术公司的研究人员和全国合作机构之间的研究人员。本科生和研究生受益于使用通过该项目实施的升级的计算机学院。本项目的13个科学驱动项目除了支持本科生和研究生的教学活动外,还支持当前资助和未资助的研究。此外,阿拉巴马大学、新墨西哥大学和伍斯特理工学院的外部合作者将利用这一可扩展计算资源的很大一部分,通常与UTC研究人员合作。预计用户包括UTC的40多名计算科学博士生,以及博士后、硕士生和本科生研究人员。科学驱动项目补充了集群的现有用途,同时强调GPU加速的研究和创造性活动,这些活动是由这笔资金支持的GPU升级专门实现的。这些科学驱动包括:基于数据驱动的驾驶员和行人预测意图模型方法;基于GIS和遥感的查塔努加地区地上碳封存研究不规则通信的便携式性能优化利用串联质谱技术鉴别代谢物活性细丝的分子动力学模拟。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kidambi Sreenivas其他文献

Kidambi Sreenivas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kidambi Sreenivas', 18)}}的其他基金

Towards First-Principles Based Wake and Wake Interaction Models for Wind-Farm Layout Optimization
面向风电场布局优化的基于第一性原理的尾流和尾流交互模型
  • 批准号:
    1236124
  • 财政年份:
    2012
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似海外基金

CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
SHF: Small: Redesigning the Memory System in the Era of Compute Express Link
SHF:小型:重新设计 Compute Express Link 时代的内存系统
  • 批准号:
    2333049
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CC* Campus Compute: Building a Computational Cluster for Scientific Discovery
CC* 校园计算:构建科学发现计算集群
  • 批准号:
    2346673
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
CC* Campus Compute: Interdisciplinary GPU-Enabled Compute
CC* 校园计算:支持 GPU 的跨学科计算
  • 批准号:
    2346343
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
MYRTUS: Multi-layer 360° dYnamic orchestrion and interopeRable design environmenT for compute-continUum Systems
MYRTUS:用于连续计算系统的多层 360° 动态编排和可互操作设计环境
  • 批准号:
    10087666
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    EU-Funded
CAREER: Reinventing Computer Vision through Bio-inspired Retinomorphic Vision Sensors, Corticomorphic Compute-In-Memory Processors and Event-based Algorithms
职业:通过仿生视网膜形态视觉传感器、皮质形态内存计算处理器和基于事件的算法重塑计算机视觉
  • 批准号:
    2338171
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
Equipment: CC* Campus Compute: A High-Performance Computing System for Research and Education in Arkansas
设备:CC* 校园计算:用于阿肯色州研究和教育的高性能计算系统
  • 批准号:
    2346752
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Research Infrastructure: CC* Campus Compute: Lawrence 2.0: Advancing Multi-Disciplinary Research and Education in South Dakota
研究基础设施:CC* 校园计算:Lawrence 2.0:推进南达科他州的多学科研究和教育
  • 批准号:
    2346643
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
DS Compute- Designing solutions for the future of computing
DS Compute - 为未来计算设计解决方案
  • 批准号:
    10050415
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Collaborative R&D
A Reconfigurable Neuromorphic Compute System for Brain-Scale Simulations
用于大脑规模模拟的可重构神经形态计算系统
  • 批准号:
    LE230100034
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了