Collaborative Research: Improving Speech Technology for Better Learning Outcomes: The Case of AAE Child Speakers
合作研究:改进语音技术以获得更好的学习成果:AAE 儿童演讲者的案例
基本信息
- 批准号:2202049
- 负责人:
- 金额:$ 26.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The lack of reading proficiency seen in children of underserved school districts has lasting impacts on students’ performances in various subjects. Low literacy is an especially pressing issue for African American students. Interactive spoken language systems offer the possibility of a powerful tool for assisting in early childhood education, freeing up teachers’ time, and engaging students in repeated opportunities for learning. These systems involve both Automatic Speech Recognition and Text-to-Speech Systems. The goal of this research is to improve the performance of such systems for young speakers of African American English (AAE) such that automated oral literacy assessment can be developed. The research has important societal and technological impacts. It will enhance the usability of speech technology in early education for AAE speaking children, providing a model for better supporting students with diverse dialects. Many under-resourced children do not have access to adequate reading and language assessments, and the proposed work will address these issues by creating methods for adapting spoken language technology to AAE children, increasing fairness in speech technology on a broader scale. The work has strong outreach and dissemination programs and will train undergraduate and graduate students in interdisciplinary research in Electrical and Computer Engineering, Linguistics, Education, and Psychology. Challenges facing children’s Automatic Speech Recognition (ASR) are due to (1) lack of child speech data and, hence, current models used for recognition are trained using data collected from adult speakers, and (2) children display a wider range of intra- and inter- speaker variability than adults. ASR performance is especially poor for children who are non-native English speakers or those who at times transition into dialects such as AAE that are different from what ASR systems are typically trained on. In addition, most dialog systems built on text-to-speech (TTS) technology are designed using General American English (GAE) voices, which minority children may not identify with. In the high-stakes area of education, these considerations impact the effectiveness of technology for different groups. The work will utilize a new and continuously developing database of AAE children's speech to research the impact of spoken language systems on children’s learning outcomes. On the learning side, the research will highlight the impact of dialect on literacy assessment. On the technology side, the work will yield novel machine learning algorithms for low-resource tasks. Specifically, this project will develop data augmentation techniques that can increase the amount of training data available for low-resource tasks, and data normalization techniques so that ASR performance is improved for AAE child speakers. The work on TTS will explore new methods of disentangling speaker and dialect impacts on spectral realization of phrases that model dialect density (rather than treating dialect as a categorical variable) and separately accounting for pronunciation and prosodic factors. Methods found to be effective for TTS will be leveraged in the data augmentation work for ASR and explored as a diagnostic in literacy assessment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在服务不足的学区,儿童缺乏阅读能力,这对学生在各个科目的表现产生了持久的影响。对于非裔美国学生来说,识字率低是一个特别紧迫的问题。交互式口语系统提供了一种强大的工具,用于帮助幼儿教育,解放教师的时间,并让学生参与反复学习的机会。这些系统既包括自动语音识别系统,也包括文本到语音系统。这项研究的目标是改善这些系统对年轻的非裔美国人英语(AAE)的表现,以便开发自动化的口语识字评估。这项研究具有重要的社会和技术影响。它将增强语音技术在AAE儿童早期教育中的可用性,为更好地支持不同方言的学生提供一个模式。许多资源不足的儿童无法获得适当的阅读和语言评估,拟议的工作将通过创造使口语技术适应AAE儿童的方法来解决这些问题,在更广泛的范围内增加语音技术的公平性。这项工作有强大的外展和传播计划,并将在电气和计算机工程、语言学、教育学和心理学的跨学科研究方面培训本科生和研究生。儿童自动语音识别(ASR)面临的挑战是:(1)缺乏儿童语音数据,因此,当前用于识别的模型是使用从成人说话人那里收集的数据进行训练的,以及(2)儿童比成人表现出更大范围的说话人内和说话人之间的可变性。对于非英语母语的儿童或有时过渡到AAE等方言的儿童来说,ASR的表现尤其糟糕,这些方言与ASR系统通常接受的培训不同。此外,大多数建立在文本到语音(TTS)技术上的对话系统都是使用通用美国英语(GAE)语音设计的,少数族裔儿童可能不会认同这种语音。在事关重大的教育领域,这些考虑因素会影响技术对不同群体的有效性。这项工作将利用一个新的和不断发展的AAE儿童语音数据库来研究口语系统对儿童学习结果的影响。在学习方面,研究将突出方言对识字评估的影响。在技术方面,这项工作将为低资源任务产生新的机器学习算法。具体地说,该项目将开发数据增强技术,以增加可用于低资源任务的训练数据量,并开发数据标准化技术,以便提高AAE儿童说话者的ASR性能。TTS方面的工作将探索新的方法,以分离说话人和方言对建模方言密度(而不是将方言作为范畴变量)并分别考虑发音和韵律因素的短语的频谱实现的影响。被发现对TTS有效的方法将被用于ASR的数据增强工作,并被用作识字评估的诊断。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mari Ostendorf其他文献
Design of a speech recognition system based on acoustically derived segmental units
基于声学分段单元的语音识别系统设计
- DOI:
10.1109/icassp.1996.541128 - 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
M. Bacchiani;Mari Ostendorf;Y. Sagisaka;K. Paliwal - 通讯作者:
K. Paliwal
Automatic recognition of prosodic phrases
自动识别韵律短语
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Colin W. Wightman;Mari Ostendorf - 通讯作者:
Mari Ostendorf
Representations for Question Answering from Documents with Tables and Text
带有表格和文本的文档问答的表示
- DOI:
10.18653/v1/2021.eacl-main.253 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
V. Zayats;Kristina Toutanova;Mari Ostendorf - 通讯作者:
Mari Ostendorf
The challenge of spoken language systems: research directions for the nineties
口语系统的挑战:九十年代的研究方向
- DOI:
10.1109/89.365385 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
R. Cole;L. Hirschman;L. Atlas;M. Beckman;A. Biermann;M. Bush;M. Clements;Jordan Cohen;Oscar Garcia;B. Hanson;H. Hermansky;S. Levinson;K. McKeown;N. Morgan;D. Novick;Mari Ostendorf;S. Oviatt;P. Price;H. Silverman;J. Spitz;A. Waibel;C. Weinstein;S. Zahorian;V. Zue - 通讯作者:
V. Zue
The stochastic segment model for continuous speech recognition
连续语音识别的随机分段模型
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
Mari Ostendorf;V. Digalakis - 通讯作者:
V. Digalakis
Mari Ostendorf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mari Ostendorf', 18)}}的其他基金
RI: Small: Modeling Idiosyncrasies of Speech for Automatic Spoken Language Processing
RI:小:为自动口语处理建模语音特质
- 批准号:
1617176 - 财政年份:2016
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
RI: Small: Simplifying Text for Individual Reading Needs
RI:小:简化文本以满足个人阅读需求
- 批准号:
0916951 - 财政年份:2009
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
U.S.-Germany Dissertation Enhancement: Predicting Hidden Structure and Punctuation in Speech for Machine Translation
美德论文增强:预测机器翻译语音中的隐藏结构和标点符号
- 批准号:
0552492 - 财政年份:2006
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
A Computing Lab for Integrated Teaching of Systems Courses in Electrical Engineering
电气工程系统课程集成教学计算实验室
- 批准号:
0511635 - 财政年份:2005
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
ITR: Applying Translation Technology to Language Modeling
ITR:将翻译技术应用于语言建模
- 批准号:
0326276 - 财政年份:2003
- 资助金额:
$ 26.01万 - 项目类别:
Continuing Grant
Speech Generation for Human-Computer Interaction
人机交互的语音生成
- 批准号:
9996440 - 财政年份:1999
- 资助金额:
$ 26.01万 - 项目类别:
Continuing Grant
STIMULATE: Modeling Structure in Speech above the Segment for Spontaneous Speech Recognition
刺激:对自发语音识别片段上方的语音结构进行建模
- 批准号:
9996450 - 财政年份:1999
- 资助金额:
$ 26.01万 - 项目类别:
Continuing Grant
Workshop for Discussing Research Priorities and Evaluation Strategies in Speech Synthesis
讨论语音合成研究重点和评估策略的研讨会
- 批准号:
9872796 - 财政年份:1998
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
STIMULATE: Modeling Structure in Speech above the Segment for Spontaneous Speech Recognition
刺激:对自发语音识别片段上方的语音结构进行建模
- 批准号:
9618926 - 财政年份:1997
- 资助金额:
$ 26.01万 - 项目类别:
Continuing Grant
Speech Generation for Human-Computer Interaction
人机交互的语音生成
- 批准号:
9528990 - 财政年份:1996
- 资助金额:
$ 26.01万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
- 批准号:
2345092 - 财政年份:2024
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
Collaborative Research: Improving Upper Division Physics Education and Strengthening Student Research Opportunities at 14 HSIs in California
合作研究:改善加州 14 所 HSI 的高年级物理教育并加强学生研究机会
- 批准号:
2345093 - 财政年份:2024
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
- 批准号:
2314254 - 财政年份:2023
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
Collaborative Research: Improving Worker Safety by Understanding Risk Compensation as a Latent Precursor of At-risk Decisions
合作研究:通过了解风险补偿作为风险决策的潜在前兆来提高工人安全
- 批准号:
2326937 - 财政年份:2023
- 资助金额:
$ 26.01万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Measuring, Validating and Improving upon App-Based Privacy Nutrition Labels
合作研究:SaTC:核心:小型:测量、验证和改进基于应用程序的隐私营养标签
- 批准号:
2247952 - 财政年份:2023
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
Collaborative Research: Reducing Model Uncertainty by Improving Understanding of Pacific Meridional Climate Structure during Past Warm Intervals
合作研究:通过提高对过去温暖时期太平洋经向气候结构的理解来降低模型不确定性
- 批准号:
2303568 - 财政年份:2023
- 资助金额:
$ 26.01万 - 项目类别:
Continuing Grant
Collaborative Research: Improving Model Representations of Antarctic Ice-shelf Instability and Break-up due to Surface Meltwater Processes
合作研究:改进地表融水过程导致的南极冰架不稳定和破裂的模型表示
- 批准号:
2213704 - 财政年份:2023
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226647 - 财政年份:2023
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
Collaborative Research: SitS: Improving Rice Cultivation by Observing Dynamic Soil Chemical Processes from Grain to Landscape Scales
合作研究:SitS:通过观察从谷物到景观尺度的动态土壤化学过程来改善水稻种植
- 批准号:
2226648 - 财政年份:2023
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 26.01万 - 项目类别:
Standard Grant