Collaborative Research: RI: AF: Small: Long-Term Impact of Fair Machine Learning under Strategic Individual Behavior

合作研究:RI:AF:小:战略性个人行为下公平机器学习的长期影响

基本信息

  • 批准号:
    2202699
  • 负责人:
  • 金额:
    $ 34.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

The development of Machine learning (ML) techniques have revolutionized society and enabled breakthroughs in various scientific fields. Despite the enormous social benefits, ML techniques have also caused ethical concerns when used to make decisions about humans. It has been evident that in many high-stakes applications, such as hiring, lending, criminal justice, and college admission, ML techniques may exhibit bias against disadvantaged or marginalized social groups or be vulnerable to individual strategic behavior. Recent studies have largely examined these as two separate issues in a static framework. However, the long-term impacts of ML techniques on the well-being of the population remain unclear. Since ML algorithms are deployed in a dynamic environment (i.e., individuals adapt their behaviors strategically and repeatedly as they interact with ML algorithms), ML developed in a static framework without considering human feedback effects may behave in an unanticipated and potentially harmful way. This project moves beyond static settings and aims to understand the long-term impacts of fair ML under dynamic human-ML interactions. Such an understanding is critical to ensure the trustworthiness of ML techniques and can be leveraged for designing effective interventions that promote long-term social welfare and equity; it may further help guide policymakers to design policies that better serve society. This project studies fairness problems in a sequential framework with humans repeatedly interacting with ML systems. Three key research questions will be addressed when investigating the long-term impacts of fair ML: (1) how to rigorously model individual strategic behavior and its impact on ML development; (2) how to validate and analyze the human behavioral model; and (3) what approaches can be taken to improve long-term human well-being? Integrating the knowledge from machine learning, stochastic control, game theory, and social sciences, this project will first establish an analytical framework that characterizes the complex sequential interactions between strategic individuals and ML. This framework could enable the rigorous analysis of the evolution of population dynamics and be further leveraged for developing effective interventions that improve social welfare and long-term equity. Finally, this project will conduct different analyses and experiments to examine the robustness and accuracy of the proposed framework and results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习(ML)技术的发展已经彻底改变了社会,并在各个科学领域取得了突破。尽管有巨大的社会效益,但机器学习技术在用于人类决策时也引起了伦理问题。很明显,在许多高风险的应用中,例如招聘、贷款、刑事司法和大学录取,ML技术可能会对弱势或边缘化的社会群体表现出偏见,或者容易受到个人战略行为的影响。最近的研究在很大程度上将这两个问题作为静态框架中的两个独立问题进行了研究。然而,机器学习技术对人类福祉的长期影响仍不清楚。由于ML算法部署在动态环境中(即,个体在与ML算法交互时策略性地反复调整其行为),因此在静态框架中开发的ML不考虑人类反馈效应可能会以意想不到的和潜在有害的方式表现。该项目超越了静态设置,旨在了解动态人机交互下公平ML的长期影响。这种理解对于确保机器学习技术的可信度至关重要,可以用于设计有效的干预措施,促进长期的社会福利和公平;它可能进一步帮助指导决策者设计更好地为社会服务的政策。该项目研究人类与机器学习系统重复交互的顺序框架中的公平性问题。在研究公平机器学习的长期影响时,将解决三个关键研究问题:(1)如何严格模拟个人战略行为及其对机器学习发展的影响;(2)如何验证和分析人类行为模型;(3)可以采取哪些方法来改善人类的长期福祉?该项目整合了机器学习、随机控制、博弈论和社会科学的知识,将首先建立一个分析框架,描述战略个体与机器学习之间复杂的顺序相互作用。该框架可以对人口动态的演变进行严格分析,并进一步用于开发有效的干预措施,以改善社会福利和长期公平。最后,本项目将进行不同的分析和实验,以检验所提出的框架和结果的稳健性和准确性。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Loss Balancing for Fair Supervised Learning
  • DOI:
    10.48550/arxiv.2311.03714
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mohammad Mahdi Khalili;Xueru Zhang;Mahed Abroshan
  • 通讯作者:
    Mohammad Mahdi Khalili;Xueru Zhang;Mahed Abroshan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xueru Zhang其他文献

Dynamic control of transverse magnetization spot arrays(共同第一作者)
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Weichao Yan;Zhongquan Nie;Xiaofei Liu;Guoqian Lan;Xueru Zhang;Yuxiao Wang;Yinglin Song
  • 通讯作者:
    Yinglin Song
Modulation of internal conversion rate and nonlinear absorption in meso-tetraphenylporphyrins by donor/acceptor substitutes
通过供体/受体替代物调节内消旋四苯基卟啉的内部转化率和非线性吸收
  • DOI:
    10.1016/j.optmat.2015.05.030
  • 发表时间:
    2015-08
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Zhongquan Nie;Yuxiao Wang;Xueru Zhang;Yinglin Song
  • 通讯作者:
    Yinglin Song
Automating Data Annotation under Strategic Human Agents: Risks and Potential Solutions
战略人工代理下的自动化数据注释:风险和潜在解决方案
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian Xie;Xueru Zhang
  • 通讯作者:
    Xueru Zhang
I NCENTIVE M ECHANISMS IN S TRATEGIC L EARNING
战略学习的激励机制
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kun Jin;Xueru Zhang;Mohammad Mahdi Khalili;Parinaz Naghizadeh;M. Liu
  • 通讯作者:
    M. Liu
Analysis of order-of-addition experiments
  • DOI:
    10.1016/j.csda.2024.108077
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xueru Zhang;Dennis K.J. Lin;Min-Qian Liu;Jianbin Chen
  • 通讯作者:
    Jianbin Chen

Xueru Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了