Emergent Mechanics of Auxetic Layered Anisotropic Composite Structures

拉胀层状各向异性复合材料结构的涌现力学

基本信息

  • 批准号:
    2202737
  • 负责人:
  • 金额:
    $ 38.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Auxetics are a special class of materials, which when stretched in one direction, expand in the other one or two directions, unlike conventional materials which contract. Auxetic materials and structures may be produced by laminating fiber reinforced composite layers in certain specific orientations and sequences. Producing auxetic composite structures significantly enhances their energy absorbing capability and delamination resistance, in comparison to equivalent non-auxetic structures. Although some experimental evidence exists, fundamental understanding of the underlying deformation mechanisms is severely lacking to use auxeticity for achieving optimum performance enhancements without compromising other properties. This award supports fundamental research to understand the mechanical behavior of auxetic layered composite structures with the help of an integrated experimental-modeling approach. Knowledge gained will enable composite structures with substantially improved toughness and damage tolerance for aircraft structures, automotives, and marine applications, while simultaneously providing weight, cost, and energy savings. New usages of auxetics facilitated by this research may extend to improved artificial bone implants, prosthetics, and dent-resistant laminated flooring. Furthermore, this award will facilitate recruitment and education of middle and high school students and foster their excitement about STEM fields. At the same time, undergraduate and graduate students will perform original research and attain new skills and talents in this critical area. In the conduct of these activities, the recruitment of women and minorities will be prioritized by leveraging institutional programs.The performance enhancements of auxetic layered anisotropic composite structures are fundamentally attributed to the underlying triaxial states of stress and the unique mechanics that lead to failure. To understand these issues, the constitutive and failure behaviors of auxetic composites (carbon fiber and carbon nanotube reinforced polymer matrix laminates) at varying levels of auxeticity will be examined through targeted experiments using state-of-the-art characterization and imaging. This will provide insights into the deformation and failure mechanisms at the microscopic level. Complementary micromechanical approaches will be used to model the observed stiffness degradation and to develop cohesive laws that reflect the physically observed behaviors. These experimentally validated micromechanical models will be integrated into an impact model developed using an energy-based phase field approach. The physical insights from this model, along with the ability to predict the response of auxetic structures under various loadings, will enable implementation of a science-based method of using auxeticity as a configuration constraint for achieving controllable performance enhancements of layered composite structures in various applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
弹性体是一类特殊的材料,当在一个方向上拉伸时,在另一个或两个方向上膨胀,而不像传统材料那样收缩。可通过以某些特定的取向和顺序层压纤维增强复合材料层来生产发泡材料和结构。与等效的非拉胀结构相比,产生拉胀复合结构显著增强了它们的能量吸收能力和抗分层性。虽然存在一些实验证据,但对基本变形机制的基本理解严重缺乏,无法使用拉胀性来实现最佳性能增强而不影响其他性能。该奖项支持基础研究,以了解拉胀层状复合材料结构的机械行为与综合实验建模方法的帮助。所获得的知识将使复合材料结构具有显著提高的韧性和损伤容限,用于飞机结构,汽车和船舶应用,同时提供重量,成本和能源节约。这项研究促进了生长素的新用途,可能会扩展到改善人工骨植入物,假肢和抗凹痕层压地板。此外,该奖项将促进初中和高中学生的招聘和教育,并培养他们对STEM领域的热情。同时,本科生和研究生将进行原创性研究,并在这一关键领域获得新的技能和人才。在开展这些活动时,将通过利用机构方案优先招聘妇女和少数民族。拉胀层状各向异性复合材料结构的性能增强从根本上归因于潜在的三轴应力状态和导致失效的独特力学。为了理解这些问题,拉胀复合材料(碳纤维和碳纳米管增强聚合物基体层压板)在不同程度的拉胀的本构和失效行为将通过有针对性的实验,使用最先进的表征和成像检查。这将在微观水平上提供对变形和破坏机制的见解。互补的微观力学方法将被用来模拟所观察到的刚度退化,并制定凝聚力的法律,反映了物理观察到的行为。这些实验验证的微观力学模型将被集成到一个影响模型开发使用基于能量的相场方法。这个模型的物理见解,沿着预测拉胀结构在各种载荷下的响应的能力,将使科学的实施-该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of Negative Poisson's Ratio on the Tensile Properties of Auxetic CFRP Composites
负泊松比对拉胀CFRP复合材料拉伸性能的影响
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yeqing Wang其他文献

Solvent-free crystallization of ZSM-5 zeolite on SiC foam as a monolith catalyst for biofuel upgrading
ZSM-5 沸石在 SiC 泡沫上的无溶剂结晶作为生物燃料升级的整体催化剂
  • DOI:
    10.1016/s1872-2067(20)63550-1
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    16.5
  • 作者:
    Qiuyan Zhu;Yeqing Wang;Lingxiang Wang;Zhiyuan Yang;Liang Wang;Xiangju Meng;Feng-Shou Xiao
  • 通讯作者:
    Feng-Shou Xiao
Growth and spectroscopic analyses of Yb,Ho:CaYAlO4 disordered crystal for ~3μm mid-infrared laser
~3μm 中红外激光 Yb,Ho:CaYAlO4 无序晶体的生长和光谱分析
  • DOI:
    10.1016/j.jlumin.2021.118067
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Wenlong Yan;Yijian Sun;Zhiyuan Wang;Wei Wang;Shanshan Fang;Yuxuan Huang;Yeqing Wang;Chaoyang Tu;Herui Wen
  • 通讯作者:
    Herui Wen
Autophagy is involved in the neuroprotective effect of nicotiflorin.
自噬参与烟花苷的神经保护作用。
  • DOI:
    10.1016/j.jep.2021.114279
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Yeqing Wang;Shanshan Zhang;Hailai Ni;Yanjie Zhang;Xiaodong Yan;Yue Gao;Beixuan He;Wenzheng Wang;Chong Liu;Meili Guo
  • 通讯作者:
    Meili Guo
Polarized spectral properties of Sm3+:CaYAlO4 crystal
  • DOI:
    https://doi.org/10.1016/j.optmat.2021.111066
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Zhiyuan Wang;Yeqing Wang;Yijian Sun;Yi Yu;Shufang Gao
  • 通讯作者:
    Shufang Gao
The sensitization and deactivation effects of Ndsup3+/sup ion in Nd,Ho:CaYAlOsub4/sub disordered crystal for 2.86 µm tunable and ultrafast laser
Nd³⁺离子在 Nd,Ho:CaYAlO₄无序晶体中对 2.86 µm 可调谐超快激光的敏化和去活化效应
  • DOI:
    10.1016/j.infrared.2022.104281
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Shanshan Fang;Yuxuan Huang;Wenlong Yan;Chaojun Shi;Yijian Sun;Zhiyuan Wang;Jian Cheng;Yeqing Wang;Chaoyang Tu;Herui Wen
  • 通讯作者:
    Herui Wen

Yeqing Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yeqing Wang', 18)}}的其他基金

Ultraviolet-light induced Frontal Polymerization in Additive Manufacturing and Repairing of Thermoset Polymer Composite - Understanding the Role of Fiber Reinforcement Phases
热固性聚合物复合材料增材制造和修复中的紫外线诱导正面聚合 - 了解纤维增强相的作用
  • 批准号:
    2208130
  • 财政年份:
    2022
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant

相似国自然基金

Science China-Physics, Mechanics & Astronomy
  • 批准号:
    11224804
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
  • 批准号:
    2409316
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
  • 批准号:
    2331294
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
  • 批准号:
    2339001
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanics of Optimal Biomimetic Torene Plates and Shells with Ultra-high Genus
合作研究:超高属度最优仿生Torene板壳力学
  • 批准号:
    2323415
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
CLIMA: Nimble, Adaptive, and Reusable Structures (NARS): Systems, Mechanics, and Financing
CLIMA:灵活、自适应和可重复使用的结构 (NARS):系统、力学和融资
  • 批准号:
    2331994
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Standard Grant
Unravelling coupling between multiscale tissue mechanics and heart valve calcification
揭示多尺度组织力学与心脏瓣膜钙化之间的耦合
  • 批准号:
    EP/X027163/2
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Fellowship
The mechanics of pollinator attraction: development and function of floral diffraction gratings
传粉媒介吸引机制:花衍射光栅的发展和功能
  • 批准号:
    BB/Y003896/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Research Grant
Towards preservation of the natural knee: State-of-the-art approaches to understand the kinematics and tissue mechanics of human menisci in vivo.
保护自然膝盖:了解体内人体半月板运动学和组织力学的最先进方法。
  • 批准号:
    EP/Y002415/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Research Grant
Control of endothelial cell mechanics and blood vessel remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
  • 批准号:
    23K23887
  • 财政年份:
    2024
  • 资助金额:
    $ 38.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了