NSF-BSF: CAS: Green Hydrogen from Liquid-Organic Hydrogen Carriers Using Supported Molecular Catalysts

NSF-BSF:CAS:使用负载分子催化剂从液体有机氢载体中产生绿色氢

基本信息

  • 批准号:
    2202775
  • 负责人:
  • 金额:
    $ 36.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

In order to address climate change, global efforts to reduce carbon dioxide (CO2) emissions are needed. To that end, sustainable production of hydrogen – as both an energy source and critical component of many chemicals – will play a key role in displacing fossil resources and their associated CO2 emissions. Because of its gaseous nature, both the transport and storage of hydrogen are challenging. The project addresses those challenges through research focused on the efficient design and utilization of Liquid Organic Hydrogen Carriers (LOHCs) – chemicals that are rich in hydrogen, manufactured at commodity scale, and transported/stored in liquid form. LOHCs must also be designed such that they readily release the hydrogen as needed and can be efficiently recycled to their hydrogen-rich state. The project focuses on catalyst technology enabling the more difficult reaction involving hydrogen release, for several promising LOHC systems, through an international collaboration with researchers at the Weizmann Institute of Science in Israel. LOHCs represent a viable approach for large-scale renewable energy storage that has the potential to obviate the inherent limitations of competing technologies based on batteries, liquid hydrogen, and liquid ammonia. The project operates at the interface of soluble- and solid-catalysis methodologies to advance the design, synthesis, characterization, and performance of supported molecular catalysts (SMCs). The targeted LOHCs build on pioneering developments in the Milstein group for dehydrogenative polymerization of ethylene glycol (EG) to form polyesters and hydrogen, and the reverse hydrogenation to regenerate EG; they also leverage promising recent catalysts designed by the Israeli group that function with formic acid (FA) as a hydrogen carrier. The project combines that group's progress with the U.S. team's solid-catalyst design and synthesis approaches, which enable a degree of preservation of organic-ligand control over catalysis typically associated with homogeneous systems, while offering advantages of solid catalysts that include ease of catalyst recovery and enhanced stability and activity. Achieving those goals involves fusing the tunability imparted by organic ligands in soluble catalysts to the decoupling of hydrogen storage and release enabled by solid catalysts. The collaboration relies on two emerging strategies for supporting molecular sites on a solid catalyst surface: (i) electrostatic anchoring on zeolite external-surface pockets and (ii) mechanical encapsulation of active sites on porous amorphous supports. These approaches enable control over the outer-sphere environment experienced by the catalyst, while inner-sphere control of the active site is achieved by anchoring well-defined metal complexes. The project will advance the state-of-the-art in several areas, including synthesis of SMCs, characterization via X-ray absorption spectroscopy, and molecular modeling. Beyond the technical aspects, the NSF project will provide mentorship opportunities for graduate and undergraduate students, with an emphasis on underrepresented groups in STEM. Members of the Katz lab will form teams in the programs BASIS and BEAM; these teams will volunteer to teach science lessons in local elementary and middle schools in economically-disadvantaged areas in the East Bay. In addition, the project will provide research opportunities for undergraduate students in underrepresented groups in STEM through the Cal NERDS programs UC LEADS and NSF CAMP, which seek to increase diversity within STEM, and stress participation from African American, LatinX, and Native American students. Furthermore, results from this research will be disseminated to a broad audience via integration into an elective course on catalyst design. The project is co-funded by the CBET Division Catalysis program and the Chemistry Division Chemical Catalysis program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
为了应对气候变化,需要全球努力减少二氧化碳(CO2)排放。为此,氢作为能源和许多化学品的关键组成部分的可持续生产将在取代化石资源及其相关二氧化碳排放方面发挥关键作用。 由于其气态性质,氢气的运输和储存都具有挑战性。 该项目通过研究液体有机氢载体(LOHC)的有效设计和利用来应对这些挑战-这些化学品富含氢气,以商品规模生产,并以液体形式运输/储存。 LOHC还必须被设计成使得它们容易根据需要释放氢,并且可以有效地再循环到它们的富氢状态。 该项目的重点是催化剂技术,通过与以色列魏茨曼科学研究所的研究人员进行国际合作,为几个有前途的LOHC系统实现涉及氢气释放的更困难的反应。 LOHC代表了大规模可再生能源存储的可行方法,有可能克服基于电池,液氢和液氨的竞争技术的固有局限性。该项目在可溶性和固体催化方法的界面上运行,以推进负载型分子催化剂(SMC)的设计,合成,表征和性能。目标LOHC建立在Milstein集团的开创性发展基础上,用于乙二醇(EG)的分解聚合以形成聚酯和氢,以及反向氢化以再生EG;它们还利用了以色列集团设计的有前途的最新催化剂,其功能与甲酸(FA)作为氢载体。该项目将该小组的进展与美国团队的固体催化剂设计和合成方法相结合,该方法能够在一定程度上保留有机配体对通常与均相系统相关的催化作用的控制,同时提供固体催化剂的优势,包括易于回收催化剂以及增强的稳定性和活性。 实现这些目标涉及将可溶性催化剂中有机配体赋予的可调性融合到固体催化剂实现的氢储存和释放的解耦。 该合作依赖于两个新兴的战略支持分子网站上的固体催化剂表面:(i)静电锚定沸石外表面口袋和(ii)机械封装的活性位点上的多孔无定形支持。这些方法使得能够控制催化剂所经历的外层环境,而活性位点的内层控制通过锚定明确的金属络合物来实现。该项目将在几个领域推进最先进的技术,包括SMC的合成,通过X射线吸收光谱进行表征和分子建模。除了技术方面,NSF项目还将为研究生和本科生提供导师机会,重点是STEM中代表性不足的群体。Katz实验室的成员将在BASIS和BEAM项目中组成团队;这些团队将志愿在东湾经济落后地区的当地小学和中学教授科学课程。此外,该项目将通过Cal NERDS项目UC LEADS和NSF CAMP为STEM中代表性不足的群体的本科生提供研究机会,这些项目旨在增加STEM中的多样性,并强调非裔美国人,拉丁美洲人和美洲原住民学生的参与。此外,这项研究的结果将通过整合到催化剂设计的选修课程中向广大受众传播。该项目由CBET部门催化计划和化学部门化学催化计划共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Katz其他文献

Sintering of additively manufactured zirconium by MoldJet technology
采用 MoldJet 技术烧结增材制造的锆
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Tatiana Vompe;Gleb Gil Goviazin;Ohad Dolev;Leon Rudnik;Alexander Katz
  • 通讯作者:
    Alexander Katz
Weakly interacting solvation spheres surrounding a calixarene-protected tetrairidium carbonyl cluster: contrasting effects on reactivity of alkane solvent and silica support.
杯芳烃保护的四铱羰基簇周围弱相互作用的溶剂化球:对烷烃溶剂和二氧化硅载体反应性的对比影响。
  • DOI:
    10.1039/c8dt01371c
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Andrew P Palermo;Shengjie Zhang;Son;D. Dixon;B. Gates;Alexander Katz
  • 通讯作者:
    Alexander Katz
Molecular motion of tethered molecules in bulk and surface-functionalized materials: a comparative study of confinement.
本体和表面功能化材料中束缚分子的分子运动:限制的比较研究。
Privileged zeolitic sites for humid COsub2/sub adsorption: Ksup+/sup in double eight-membered rings
用于潮湿二氧化碳吸附的特权沸石位点:双八元环中的钾离子
  • DOI:
    10.1039/d4cc03267e
  • 发表时间:
    2024-09-12
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Hwangho Lee;Shu Hikima;Ryohji Ohnishi;Takahiko Takewaki;Alexander Katz
  • 通讯作者:
    Alexander Katz
Reversible Intrapore Redox Cycling of Platinum in Platinum-Ion-Exchanged HZSM-5 Catalysts
铂离子交换 HZSM-5 催化剂中铂的可逆孔内氧化还原循环
  • DOI:
    10.1021/acscatal.3c06325
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    12.9
  • 作者:
    Kaan Yalcin;Ram Kumar;Erik Zuidema;A. Kulkarni;J. Ciston;Karen C. Bustillo;P. Ercius;Alexander Katz;Bruce C. Gates;C. Kronawitter;Ron C. Runnebaum
  • 通讯作者:
    Ron C. Runnebaum

Alexander Katz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Katz', 18)}}的其他基金

PFI:AIR - TT: Robust and Selective Catalysts Based on Organic-Functionalized Delaminated Zeolites
PFI:AIR - TT:基于有机功能化分层沸石的鲁棒性和选择性催化剂
  • 批准号:
    1542974
  • 财政年份:
    2015
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
I-Corps: Innovation Corps Teams Program Catalysts for aromatic alkylation
I-Corps:创新军团团队计划芳烃烷基化催化剂
  • 批准号:
    1402467
  • 财政年份:
    2014
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
Hybrid Organic-Inorganic Active Sites for Selective Heterogeneous Catalysis
用于选择性多相催化的杂化有机-无机活性位点
  • 批准号:
    0854560
  • 财政年份:
    2009
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
The Synthesis and Characterization of Imprinted Silica Using Nanoparticle Templates
使用纳米颗粒模板合成和表征印迹二氧化硅
  • 批准号:
    0444761
  • 财政年份:
    2005
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Continuing Grant
NER: Immobilized Calixarenes as Nanomaterials for Selective Catalysis and Molecular Recognition
NER:固定化杯芳烃作为纳米材料用于选择性催化和分子识别
  • 批准号:
    0403710
  • 财政年份:
    2004
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
The Design and Synthesis of Hybrid Organic-Inorganic Materials as Base Catalysts
有机-无机杂化基催化剂材料的设计与合成
  • 批准号:
    0407478
  • 财政年份:
    2004
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
International Research Fellow Awards: Supramolecular Synthesis of Enzyme-Mimicking Materials
国际研究员奖:模拟酶材料的超分子合成
  • 批准号:
    9806429
  • 财政年份:
    1998
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Fellowship Award

相似国自然基金

枯草芽孢杆菌BSF01降解高效氯氰菊酯的种内群体感应机制研究
  • 批准号:
    31871988
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
基于掺硼直拉单晶硅片的Al-BSF和PERC太阳电池光衰及其抑制的基础研究
  • 批准号:
    61774171
  • 批准年份:
    2017
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
B细胞刺激因子-2(BSF-2)与自身免疫病的关系
  • 批准号:
    38870708
  • 批准年份:
    1988
  • 资助金额:
    3.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321481
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: How cell adhesion molecules control neuronal circuit wiring: Binding affinities, binding availability and sub-cellular localization
合作研究:NSF-BSF:细胞粘附分子如何控制神经元电路布线:结合亲和力、结合可用性和亚细胞定位
  • 批准号:
    2321480
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Continuing Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
  • 批准号:
    2338819
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333889
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-BSF: Under Pressure: The evolution of guard cell turgor and the rise of the angiosperms
合作研究:NSF-BSF:压力之下:保卫细胞膨压的进化和被子植物的兴起
  • 批准号:
    2333888
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Continuing Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
  • 批准号:
    2400195
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
NSF-BSF Combinatorial Set Theory and PCF
NSF-BSF 组合集合论和 PCF
  • 批准号:
    2400200
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
NSF-BSF: CDS&E: Tensor Train methods for Quantum Impurity Solvers
NSF-BSF:CDS
  • 批准号:
    2401159
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
  • 批准号:
    2420942
  • 财政年份:
    2024
  • 资助金额:
    $ 36.08万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了