Role of Monomer Sequence and Polymer Topology in Polymer Assembly

单体序列和聚合物拓扑在聚合物组装中的作用

基本信息

  • 批准号:
    2203179
  • 负责人:
  • 金额:
    $ 82.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2027-03-31
  • 项目状态:
    未结题

项目摘要

PART 1: NON-TECHNICAL SUMMARYAs very long molecules, polymer chains can take on many shapes ranging from fully extended to collapsed. While the shape of some natural polymers, namely proteins, has evolved to be very complex and embeds significant functionality, synthetic polymer chain shapes are comparatively crude. Improved control of chain shape could, therefore, advance the design of materials for applications as diverse as organic electronics, structural plastics, and complex fluids. Recently, synthetic methods have improved to the point where we can make polymer chains with chemistry as complex as proteins, but the ability to design materials that attain specific shape remains out of reach. Taking inspiration from proteins, the PI's group will leverage these developments in polymer chemistry to determine the design rules controlling the chain shape and assembly of these polymers. Further, insights connecting the molecular design of a polymer to its three-dimensional shape will improve our understanding of natural protein folding and develop the tools necessary to synthesize materials with the complexity and function inherent in biology. An important component of the project focuses on broadening participation in polymer science at all levels including: (1) Engaging incoming community-college transfer students in research efforts, (2) A robust program of “Science Night” outreach activities, and (3) The training of undergraduate and graduate student researchers.PART 2: TECHNICAL SUMMARYMonomer sequence and polymer topology are two essential design handles to control polymer conformation and self-assembly. Recent advances in the gram-scale synthesis of sequence-controlled polypeptoids now make it possible to directly test predictions of how monomer sequence and polymer topology control chain collapse and leverage access to previously unrealized mesostructures. This project spans both chemical patterning and polymer topology as handles for fine-tuning material properties and, thus, builds a foundation for designing made-to-order soft materials and synthetic biological systems. Beyond precisely defined monomer sequence, junction location, and arm length, polypeptoids also provide user-defined chain stiffness, offering yet another handle to control chain shape and interfacial curvature. The PI's group will use this platform to explore how sequence and dynamic intramolecular interactions can be used to tune collapsed molecular structure, providing insight on protein folding and colloid design. In addition, they will synthesize polypeptoids with non-linear topologies and study their melt self-assembly, thus eliminating the dispersity effects intrinsic to most synthetic routes. In particular, the project will determine the role of interfacial curvature on resulting morphologies and explore how conformational asymmetry and complex topologies (graft and star architectures) can be combined to fine-tune self-assembly. Further, the PI's group will model polypeptoids as controlled platforms to generate insights for graft polymer design, beginning with systems to address two outstanding questions: (1) where does the limit between graft/star/bottlebrush lie? and (2) can the inherent competition between backbone orientation in inhomogeneous bottlebrushes be used to access new morphologies?.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一部分: 非技术概述作为非常长的分子,聚合物链可以呈现从完全延伸到塌陷的许多形状。 虽然一些天然聚合物(即蛋白质)的形状已经进化得非常复杂,并嵌入了重要的功能,但合成聚合物链的形状相对粗糙。 因此,改善链形状的控制可以促进材料的设计,用于有机电子,结构塑料和复杂流体等各种应用。 最近,合成方法已经改进到我们可以制造像蛋白质一样复杂的化学聚合物链的地步,但是设计具有特定形状的材料的能力仍然遥不可及。 从蛋白质中获得灵感,PI的团队将利用聚合物化学的这些发展来确定控制这些聚合物的链形状和组装的设计规则。 此外,将聚合物的分子设计与其三维形状联系起来的见解将提高我们对天然蛋白质折叠的理解,并开发合成具有生物学固有复杂性和功能的材料所必需的工具。 该项目的一个重要组成部分侧重于在各个层面扩大对聚合物科学的参与,包括:(1)让即将到来的社区大学转学生参与研究工作,(2)一个强大的“科学之夜”外联活动计划,以及(3)本科生和研究生研究人员的培训。 技术概述分子序列和聚合物拓扑结构是控制聚合物构象和自组装的两个基本设计手柄。克级合成序列控制的多肽的最新进展,现在可以直接测试单体序列和聚合物拓扑结构如何控制链崩溃和利用访问以前未实现的介观结构的预测。该项目涵盖化学图案化和聚合物拓扑结构,作为微调材料特性的手柄,从而为设计定制软材料和合成生物系统奠定了基础。 除了精确定义的单体序列、连接位置和臂长之外,类多肽还提供用户定义的链刚度,提供另一种控制链形状和界面曲率的手柄。PI的团队将利用这个平台来探索如何使用序列和动态分子内相互作用来调整折叠的分子结构,从而提供对蛋白质折叠和胶体设计的见解。此外,他们将合成具有非线性拓扑结构的多肽,并研究其熔融自组装,从而消除大多数合成路线固有的分散性效应。特别是,该项目将确定界面曲率对所得形态的作用,并探索如何将构象不对称性和复杂拓扑结构(接枝和星星结构)结合起来微调自组装。此外,PI的小组将模拟多肽作为受控平台,以产生接枝聚合物设计的见解,从解决两个突出问题的系统开始:(1)接枝/星星/瓶刷之间的界限在哪里?以及(2)在不均匀的瓶刷中,主链取向之间的固有竞争是否可以用来获得新的形态?该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Control over Conformational Landscapes of Polypeptoids by Monomer Sequence Patterning
通过单体序列图案控制多肽的构象景观
  • DOI:
    10.1021/acs.macromol.3c02338
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    DeStefano, Audra J.;Mengel, Shawn D.;Bates, Morgan W.;Jiao, Sally;Shell, M. Scott;Han, Songi;Segalman, Rachel A.
  • 通讯作者:
    Segalman, Rachel A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Segalman其他文献

ポリチオフェンを一成分とするブロック共重合体の調製と自己組織化
以聚噻吩为组分的嵌段共聚物的制备及自组装
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Ho;川口大輔;Rachel Segalman
  • 通讯作者:
    Rachel Segalman
Photoresist Design to Address Stochastics Issues in EUV Resists
解决 EUV 光刻胶中随机问题的光刻胶设计

Rachel Segalman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Segalman', 18)}}的其他基金

Conference: 2024 Polymer Physics GRC and GRS, Role of Molecular Design in Polymer Physics
会议:2024高分子物理GRC和GRS,分子设计在高分子物理中的作用
  • 批准号:
    2402308
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Polypeptoids as model materials for studying the role of monomer sequence and chain shape on block copolymer self-assembly
类多肽作为研究单体序列和链形状对嵌段共聚物自组装作用的模型材料
  • 批准号:
    1608297
  • 财政年份:
    2016
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Crystalline Conjugated Block Copolymer Self-Assembly
结晶共轭嵌段共聚物自组装
  • 批准号:
    1449584
  • 财政年份:
    2014
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
Crystalline Conjugated Block Copolymer Self-Assembly
结晶共轭嵌段共聚物自组装
  • 批准号:
    1206296
  • 财政年份:
    2012
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant
CAREER: An Integrated Approach to Understanding and Controlling the Self-Assembly of Rod-Coil Block Copolymers with an Educational Program in Materials Exploration
职业:通过材料探索教育计划了解和控制棒-线圈嵌段共聚物自组装的综合方法
  • 批准号:
    0546560
  • 财政年份:
    2006
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Sequence Matters: Exploring the Monomer Sequence-Hydrogel Property Relationship
序列很重要:探索单体序列-水凝胶特性关系
  • 批准号:
    24K17728
  • 财政年份:
    2024
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Recycling of acrylic plastics: understanding how to achieve virgin-quality monomer product from chemical recycling technologies.
丙烯酸塑料的回收:了解如何通过化学回收技术获得原始质量的单体产品。
  • 批准号:
    2798198
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Studentship
Advanced chemical recycling of mixed plastics for monomer recovery
混合塑料的先进化学回收用于单体回收
  • 批准号:
    DP220102622
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Discovery Projects
Identifying differences in dynamics and residual structure of intrinsically disordered domains between monomer and fibers: using alpha-synuclein as a model
识别单体和纤维之间本质无序域的动力学和残余结构的差异:使用α-突触核蛋白作为模型
  • 批准号:
    10607325
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
Development of Precisely Controlled Cationic Copolymerization Systems for Polymers with Controlled Molecular Weight, Monomer Sequence, and Degradability
开发精确控制的阳离子共聚体系,用于控制分子量、单体序列和降解性的聚合物
  • 批准号:
    23H02010
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: New Approaches to Achieve Ethylene and Polar Monomer Copolymerization
LEAPS-MPS:实现乙烯和极性单体共聚的新方法
  • 批准号:
    2316776
  • 财政年份:
    2023
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Standard Grant
Gas phase activation of monosaccharides and 5-hydroxymethylfurfural to 2,5 diformylfuran a PEF monomer
单糖和 5-羟甲基糠醛气相活化生成 2,5 二甲酰呋喃 (PEF 单体)
  • 批准号:
    RGPIN-2021-03276
  • 财政年份:
    2022
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Discovery Grants Program - Individual
Visible-light driven biodegradable polymer monomer synthesis from carbon dioxide as a raw material with by a hybrid catalyst system
以二氧化碳为原料,采用混合催化剂体系合成可见光驱动的可生物降解聚合物单体
  • 批准号:
    22H01872
  • 财政年份:
    2022
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Woody biomass with excellent growth and processing properties by unconventional monomer incorporated lignin
通过非常规单体掺入木质素,木质生物质具有优异的生长和加工性能
  • 批准号:
    22H02413
  • 财政年份:
    2022
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Conjugated Polymers Based on a Monomer Unit with Optimized Bond-Length Alternation
基于具有优化键长交替的单体单元的共轭聚合物的开发
  • 批准号:
    21K20548
  • 财政年份:
    2021
  • 资助金额:
    $ 82.5万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了