Gravitational Instantons, Mirror Symmetry, and Enumerative Geometry
引力瞬子、镜像对称和枚举几何
基本信息
- 批准号:2204109
- 负责人:
- 金额:$ 15.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Manifolds are mathematical spaces; examples include our three-dimensional world and the four-dimensional space-time. Mirror symmetry is a mysterious duality from string theory that links different fields of geometry on a manifold and its mirror image. These geometries are a priori unrelated to each other. Gravitational instantons are special four-dimensional manifolds that are the building blocks of quantum gravity theory in theoretical physics and important objects in different branches of mathematics. This project will mainly focus on gravitational instantons, starting by investigating their differential geometric aspects and then probing implications in enumerative geometry and algebraic geometry via mirror symmetry. Furthermore, the project will study how these implications feed back to differential geometry, aiming to unify the understanding of mirror symmetry from different aspects in geometry. The research will provide projects for undergraduate and graduate students. The PI will continue to organize conferences and to illustrate practical applications of mathematics for undergraduate students to increase the pool of next generation geometers. The PI plans to use the SYZ geometry to bridge the connection between gravitational instantons, mirror symmetry, and enumerative geometry. Utilizing the SYZ fibrations already constructed in various gravitational instantons recently, the PI will investigate a full SYZ mirror symmetry, simultaneously governing both A-side and B-side geometry and coupled with the Landau-Ginzburg model. The PI will use it to understand the relation between hyper-Kähler rotation with mirror symmetry. On the other hand, the knowledge from the mirror symmetry will help to study the global metric description of log Calabi-Yau surfaces and the compactification of gravitational instantons, in return to the study of the moduli space of gravitational instantons. The metric perspective of the gravitational instantons will lead to explicit calculation of local open Gromov-Witten invariants in enumerative geometry and concrete examples for comparing the family Floer mirrors and Gross-Siebert/Gross-Hacking-Keel-Siebert mirror constructions. A byproduct of the understanding of the metric description of the geometry is various new constructions of minimal Lagrangians in Calabi-Yau manifolds. Some parts of the techniques are expected to provide steppingstones for probing the Calabi-Yau three-fold geometry with fibration structures.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
流形是数学空间;例子包括我们的三维世界和四维时空。镜像对称是弦理论中的一种神秘的对偶性,它将流形上的不同几何领域与其镜像联系起来。这些几何形状是彼此先验无关的。引力瞬子是一种特殊的四维流形,是理论物理中量子引力理论的基石,也是数学不同分支中的重要研究对象。这个项目将主要关注引力瞬子,从研究它们的微分几何方面开始,然后通过镜像对称探索枚举几何和代数几何的含义。此外,该项目将研究这些含义如何反馈到微分几何,旨在统一几何学不同方面对镜像对称性的理解。这项研究将为本科生和研究生提供项目。PI将继续组织会议,并说明数学的实际应用本科生,以增加下一代geometers池。PI计划使用SYZ几何来连接引力瞬子、镜像对称和枚举几何。利用最近在各种引力瞬子中已经构建的SYZ纤维化,PI将研究一个完整的SYZ镜像对称,同时控制A面和B面几何,并与Landau-Ginzburg模型耦合。PI将使用它来理解超凯勒旋转与镜像对称之间的关系。另一方面,镜像对称性的知识将有助于研究log Calabi-Yau曲面的整体度规描述和引力瞬子的紧化,进而研究引力瞬子的模空间。引力瞬子的度规观点将导致在枚举几何中显式计算局部开放Gromov-Witten不变量,并给出比较Floer镜和Gross-Siebert/Gross-Hacking-Keel-Siebert镜结构的具体例子。理解几何的度量描述的副产品是各种新的最小拉格朗日在卡-丘流形的建设。该技术的某些部分预计将提供踏脚石探测卡-丘三重几何与纤维结构。这一奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Torelli theorem for gravitational instantons
引力瞬时子的托雷利定理
- DOI:10.1017/fms.2022.67
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Collins, Tristan;Jacob, Adam;Lin, Yu-Shen
- 通讯作者:Lin, Yu-Shen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu-Shen Lin其他文献
Using of Two Dimensional Speckle Tracking Echocardiography to Predict Major Adverse Events and Segmental Function Recovery in Patients with Acute Myocardial Infarction and Preserved Ejection Fraction
- DOI:
10.1016/j.ultrasmedbio.2017.08.1167 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:
- 作者:
Ju-Feng Hsiao;Jen-Te Hsu;Chang-Min Chung;Yu-Shen Lin;Kuo-Li Pan;Shih-Tai Chang;Chi-Ming Chu - 通讯作者:
Chi-Ming Chu
SYZ mirror symmetry for del Pezzo surfaces and affine structures
SYZ 镜像对称对于 del Pezzo 曲面和仿射结构
- DOI:
10.1016/j.aim.2024.109488 - 发表时间:
2024-03-01 - 期刊:
- 影响因子:1.500
- 作者:
Siu-Cheong Lau;Tsung-Ju Lee;Yu-Shen Lin - 通讯作者:
Yu-Shen Lin
Yu-Shen Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Examining topological solitons and instantons in the limit of large topological charge
在大拓扑电荷极限下检查拓扑孤子和瞬时子
- 批准号:
568729-2022 - 财政年份:2022
- 资助金额:
$ 15.76万 - 项目类别:
Postgraduate Scholarships - Doctoral
Instantons, Lagrangians, and Low Dimensional Topology
瞬子、拉格朗日和低维拓扑
- 批准号:
2208181 - 财政年份:2022
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Instantons, Representations and Low Dimensional Topology
瞬子、表示和低维拓扑
- 批准号:
2030179 - 财政年份:2020
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Singularity Formation in Kahler Geometry and Yang-Mills Instantons
卡勒几何和杨米尔斯瞬子中奇点的形成
- 批准号:
2004261 - 财政年份:2020
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Search for QCD Instantons at the LHC using the ATLAS detector
使用 ATLAS 探测器在大型强子对撞机上搜索 QCD 瞬子
- 批准号:
2268459 - 财政年份:2019
- 资助金额:
$ 15.76万 - 项目类别:
Studentship
Higgs instantons in the Standard Model
标准模型中的希格斯瞬子
- 批准号:
2275318 - 财政年份:2019
- 资助金额:
$ 15.76万 - 项目类别:
Studentship
Instantons, Representations and Low Dimensional Topology
瞬子、表示和低维拓扑
- 批准号:
1812033 - 财政年份:2018
- 资助金额:
$ 15.76万 - 项目类别:
Standard Grant
Imaginary time instantons and pseudogap state in superconducting cuprates.
超导铜酸盐中的虚数瞬时子和赝能隙态。
- 批准号:
408024965 - 财政年份:2018
- 资助金额:
$ 15.76万 - 项目类别:
Research Grants
Geometry of vector bundles and moduli spaces of instantons
向量丛的几何和瞬子模空间
- 批准号:
402489-2011 - 财政年份:2018
- 资助金额:
$ 15.76万 - 项目类别:
Discovery Grants Program - Individual
Instantons in high dimension
高维瞬子
- 批准号:
475242-2015 - 财政年份:2017
- 资助金额:
$ 15.76万 - 项目类别:
Postgraduate Scholarships - Doctoral