Moduli Spaces of Higgs Bundles, Gauge Theory, and Related Topics

希格斯丛集的模空间、规范理论及相关主题

基本信息

  • 批准号:
    2204346
  • 负责人:
  • 金额:
    $ 35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Moduli are parameters describing the variation of a particular geometric or algebraic structure. The construction of a moduli space brings with it a deeper understanding of which geometric structures behave well in families, and the geometric analysis of the moduli space itself reveals invariant properties of the objects they parametrize. This notion plays an important role in geometry and physics. It has also proved useful to certain applied fields such as robotics. This project seeks to extend the PI’s previous work on certain moduli spaces that arise naturally from the gauge theory of elementary particles. The research supported by this award will further our understanding of the relationship between the geometric, analytic, and algebraic properties of moduli spaces. The PI will continue mentoring undergraduate and graduate students, as well as other early career researchers. He will co-organize workshops and conferences to introduce students to the latest developments in the field and to give a platform to recent Ph.D. recipients to announce the results of their research.The specific goals of this project lie in three areas of complex geometry related to holomorphic bundles, gauge theory, and moduli problems. The first continues work of the PI on moduli spaces of Higgs bundles on Riemann surfaces. These include three subprojects: (1) conformal limits for parabolic lambda-connections; (2) an analytic construction of the universal moduli space of Higgs bundles over varying Riemann surfaces; and (3) the asymptotic structure of the moduli space and its topological properties. In the second area of proposed research, the PI will prove further results surrounding his work on complex Chern-Simons bundles. He will investigate the link with hyperholomorphic bundles on moduli spaces, and also clarify the relationship of his constructions to important previous work on Atiyah algebras of determinants of cohomology. The third project is the study of higher dimensional generalizations of the Yang-Mills equations and their relationship to the complex geometry of holomorphic bundles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模量是描述特定几何或代数结构的变化的参数。模空间的构造带来了对哪些几何结构在族中表现良好的更深入的理解,并且模空间本身的几何分析揭示了它们参数化的对象的不变性质。这个概念在几何学和物理学中起着重要的作用。它也被证明是有用的某些应用领域,如机器人。这个项目旨在扩展PI以前在某些模空间上的工作,这些模空间自然地产生于基本粒子的规范理论。该奖项所支持的研究将进一步加深我们对模空间的几何、分析和代数性质之间关系的理解。PI将继续指导本科生和研究生,以及其他早期职业研究人员。他将共同组织研讨会和会议,向学生介绍该领域的最新发展,并为最近的博士提供平台。该项目的具体目标在于与全纯丛、规范理论和模问题相关的复杂几何的三个领域。第一个继续工作的PI模空间上的希格斯包黎曼曲面。其中包括三个子项目:(1)抛物Higda联络的共形极限;(2)变Riemann曲面上Higgs丛的泛模空间的解析构造;(3)模空间的渐近结构及其拓扑性质。 在拟议的研究的第二个领域,PI将证明进一步的结果围绕他的工作复杂的陈-西蒙斯束。 他将调查的联系与超全纯束模空间,也澄清了他的建设的关系,以前的重要工作对Atiyah代数的决定因素的上同调。第三个项目是研究杨-米尔斯方程的高维推广及其与全纯丛的复杂几何的关系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Meyer–Vietoris Formula for the Determinant of the Dirichlet-to-Neumann Operator on Riemann Surfaces
黎曼曲面上狄利克雷-诺依曼算子行列式的Meyer-Vietoris公式
  • DOI:
    10.1007/s12220-022-01097-6
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wentworth, Richard A.
  • 通讯作者:
    Wentworth, Richard A.
A Hitchin connection on nonabelian theta functions for parabolic ?-bundles
抛物线 β-丛的非阿贝尔 theta 函数的希钦连接
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Wentworth其他文献

Local degeneration of the moduli space of vector bundles and factorization of rank two theta functions. I
  • DOI:
    10.1007/bf01459510
  • 发表时间:
    1993-09-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Georgios Daskalopoulos;Richard Wentworth
  • 通讯作者:
    Richard Wentworth
The Mathematical Work of François Labourie
  • DOI:
    10.1007/s10711-025-00995-7
  • 发表时间:
    2025-04-10
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Olivier Guichard;Sara Maloni;Jean-Marc Schlenker;Richard Wentworth
  • 通讯作者:
    Richard Wentworth
Wild orbits and generalised singularity modules: stratifications and quantisation
狂野轨道和广义奇点模块:分层和量化
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Damien Calaque;Giovanni Felder;Gabriele Rembado;Richard Wentworth
  • 通讯作者:
    Richard Wentworth

Richard Wentworth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Wentworth', 18)}}的其他基金

Moduli Spaces of Higgs Bundles, Hermitian-Yang-Mills Connections, and Related Topics
希格斯丛集的模空间、埃尔米特-杨-米尔斯连接以及相关主题
  • 批准号:
    1906403
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Geometric Structures on Higher Teichmuller Spaces
FRG:协作研究:更高 Teichmuller 空间上的几何结构
  • 批准号:
    1564373
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Geometry and Analysis of Moduli Spaces of Holomorphic Bundles
全纯丛模空间的几何与分析
  • 批准号:
    1406513
  • 财政年份:
    2014
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Geometry, Analysis, and Surfaces: An International Workshop in Autrans, France
几何、分析和曲面:法国 Autrans 举办的国际研讨会
  • 批准号:
    1063676
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Holomorphic Vector Bundles, Harmonic Maps, and the Topology of Moduli Spaces
全纯向量丛、调和映射和模空间拓扑
  • 批准号:
    1037094
  • 财政年份:
    2010
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Problems in Geometric Analysis: Harmonic Maps and Holomorphic Vector Bundles
几何分析中的问题:调和映射和全纯向量丛
  • 批准号:
    0924299
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Holomorphic Vector Bundles, Harmonic Maps, and the Topology of Moduli Spaces
全纯向量丛、调和映射和模空间拓扑
  • 批准号:
    0805797
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Problems in Geometric Analysis: Harmonic Maps and Holomorphic Vector Bundles
几何分析中的问题:调和映射和全纯向量丛
  • 批准号:
    0505512
  • 财政年份:
    2005
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
US-France Cooperative Research: Discrete Groups, Representation Varieties, and CR-Geometry
美法合作研究:离散群、表示簇和 CR 几何
  • 批准号:
    0232724
  • 财政年份:
    2003
  • 资助金额:
    $ 35万
  • 项目类别:
    Standard Grant
Geometric Analysis with Applications in Low Dimensions
低维几何分析及其应用
  • 批准号:
    0204496
  • 财政年份:
    2002
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant

相似海外基金

Geometry of Moduli spaces of Connections and Higgs fields and their Applications
联结模空间和希格斯场的几何及其应用
  • 批准号:
    22K18669
  • 财政年份:
    2022
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Moduli Spaces of Higgs Bundles, Hermitian-Yang-Mills Connections, and Related Topics
希格斯丛集的模空间、埃尔米特-杨-米尔斯连接以及相关主题
  • 批准号:
    1906403
  • 财政年份:
    2019
  • 资助金额:
    $ 35万
  • 项目类别:
    Continuing Grant
Asymptotic properties of Higgs bundle moduli spaces and related geometric structures.
希格斯丛模空间和相关几何结构的渐近性质。
  • 批准号:
    405873528
  • 财政年份:
    2018
  • 资助金额:
    $ 35万
  • 项目类别:
    Heisenberg Fellowships
Higgs bundle moduli spaces and spectral data
希格斯丛模空间和光谱数据
  • 批准号:
    DE160100024
  • 财政年份:
    2016
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Early Career Researcher Award
Moduli spaces of connections and Higgs bundles and Spectral curves
连接模空间、希格斯丛和谱曲线
  • 批准号:
    15K13427
  • 财政年份:
    2015
  • 资助金额:
    $ 35万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Higgs spaces, loop crystals and representation of loop Lie algebras
希格斯空间、环晶体和环李代数的表示
  • 批准号:
    EP/I02610X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 35万
  • 项目类别:
    Fellowship
Geometry of differential spaces and of solution spaces of Yang-Mills-Higgs equations
微分空间和杨-米尔斯-希格斯方程解空间的几何
  • 批准号:
    8091-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of differential spaces and of solution spaces of Yang-Mills-Higgs equations
微分空间和杨-米尔斯-希格斯方程解空间的几何
  • 批准号:
    8091-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of differential spaces and of solution spaces of Yang-Mills-Higgs equations
微分空间和杨-米尔斯-希格斯方程解空间的几何
  • 批准号:
    8091-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
Geometry of differential spaces and of solution spaces of Yang-Mills-Higgs equations
微分空间和杨-米尔斯-希格斯方程解空间的几何
  • 批准号:
    8091-2005
  • 财政年份:
    2006
  • 资助金额:
    $ 35万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了