EAR-PF: Constraining Paired Air-Water Temperature Models' Efficacy In Head and Intermediate Watersheds With Groundwater and Bedrock Assessment and Multi-Decade Temperature Records
EAR-PF:通过地下水和基岩评估以及数十年的温度记录来约束成对空气-水温度模型在源头和中间流域的功效
基本信息
- 批准号:2204523
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Climate change increases atmospheric temperatures, which alters temperature patterns in groundwater and streams and results in reduced water quality and ecological diversity. In parts of the eastern United States, like West Virginia, climate has already warmed 0.5º – 1.0º F over the last century and temperatures are expected to rise another 3º – 4º F by the year 2100, further warming stream and shallow groundwater temperatures and affecting the organisms that live there. Stream temperature patterns provide insight into the vulnerability of these streams and watersheds to warming temperatures. However, current models do not fully account for temperature changes caused by interactions of water on the surface and underground. Model predictions of ground and surface water temperatures in a changing climate must be informed by the factors that influence thermal signals, including climate, geology, hydrology, land use, and land cover. Data show stream temperature changes in response to changing climate are likely driven (in part) by changes in relative contributions and temperatures of discharging groundwater. The Fernow Experimental Forest (FEF) in West Virginia has been recording temperature data in at least ten headwater watersheds since 1958. Using the FEF as a well-controlled outdoor laboratory to study these temperature patterns, Riddell will generate improved models and better knowledge of these systems. Improved models can be used to estimate watershed responses to drought or high intensity precipitation events, and associated disasters such as flooding. This work will directly impact middle and high school high school students in WV through collaboration with the National Youth Science Foundation (NYSF). This proposed work is in the Monongahela National Forest where the National Youth Science Foundation has hosted its National Youth Science Camp since 1963. The FEF is close to the camp and the newly purchased National Youth Science Center (NYSCenter) in Davis, WV. During this project, collaboration with NYSF staff will result in the installation of a stream gage monitoring station on the Blackwater River, which is adjacent to the NYSCenter to deliver hydrology education to middle and high school students in WV. This collaboration will support the NYSF mission to build and maintain student interest in STEM fields and promote high school retention rates and the pursuance of post-secondary STEM education.Climate change is increasing atmospheric temperatures which alters thermal patterns in groundwater and streams, resulting in reduced water quality and ecological diversity. Thermal regimes in surface waters are highly influenced by groundwater and its connectivity to the surface, which may be discerned by comparing air and stream temperature records. Paired air-water temperature analysis via sine wave regression is a way to characterize the relationship between air temperature and surface water temperature to elucidate the groundwater contributions to watershed hydraulics, cold-water habitat refugia, and groundwater temperature response to climate change. Recent research has focused on modeling annual paired-air/water temperature signals to assess the role of groundwater in propagating air temperature to stream water from sub-watershed to continental scales. Results of these sine regression studies are focused on determining the inputs of groundwater to surface water and the eventual response of surface water to climate change by comparing the amplitude ratios (sine curve peak height) and phase lag signals (time between peaks) of air and water temperature records. Deeper groundwater signatures show little variation in annual temperature and have ambiguous amplitude ratio and phase lag whereas shallow groundwater signatures show high amplitude ratios and measurable phase lag on the order of days. However, current models do not fully account for groundwater – surface water interactions that influence stream temperatures. These processes are governed by aquifer characteristics such as aquifer thickness, porosity, hydraulic conductivity, and bedrock type and depth. This study will utilize the Fernow Experimental Forest in WV to improve thermal stream model efficacy in small and intermediate watersheds by collecting new groundwater temperature measurements, assessing the influence of differing bedrock geology in the same watershed, and exploring the efficacy of these models in hydrologically connected, nested watersheds and in watersheds in which air and stream temperature records exist across multiple decades. This study will advance the knowledge of groundwater contributions to headwater watersheds and intermediate watersheds into which they discharge and to the vulnerability of these watersheds to climate change. The current models (sine regression) being applied to large, continental size watersheds recognize the importance of local hydrogeology and geology on groundwater behavior and the subsequent effects on surface stream temperature patterns. However, no study has yet to intensively characterize the surface hydrology, hydrogeology, and bedrock geology of small watersheds and the contribution of all these factors on stream temperature patterns. This study will fill that gap and highlight the importance of characterizing the subsurface when making predictions about the surface. This project is jointly funded by the Earth Sciences Postdoctoral Fellowship program, the Established Program to Stimulate Competitive Research (EPSCoR) and the Hydrologic Sciences program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气候变化使大气温度升高,改变了地下水和河流的温度模式,导致水质和生态多样性下降。在美国东部的部分地区,如西弗吉尼亚州,气候在上个世纪已经变暖0.5 - 1.0华氏度,预计到2100年气温将再上升3 - 4华氏度,使河流和浅层地下水温度进一步变暖,影响生活在那里的生物。流温度模式提供洞察这些溪流和流域的脆弱性,以变暖的温度。然而,目前的模型并没有完全考虑到地表和地下水相互作用引起的温度变化。在不断变化的气候中,地下水和地表水温度的模型预测必须考虑到影响热信号的因素,包括气候、地质、水文、土地利用和土地覆盖。数据显示,河流温度变化对气候变化的响应可能(部分)是由排放地下水的相对贡献和温度变化驱动的。自1958年以来,西弗吉尼亚州的Fernow实验森林(FEF)已经记录了至少10个水源流域的温度数据。使用FEF作为一个良好控制的室外实验室来研究这些温度模式,里德尔将产生改进的模型和更好的知识,这些系统。改进的模型可用于估计流域对干旱或高强度降水事件以及洪水等相关灾害的响应。这项工作将通过与国家青年科学基金会(NYSF)的合作,直接影响西弗吉尼亚州的初中和高中学生。这项拟议的工作是在莫农加希拉国家森林,国家青年科学基金会自1963年以来一直主办其国家青年科学营。FEF靠近营地和西弗吉尼亚州戴维斯新购买的国家青年科学中心(NYSCenter)。在该项目期间,与NYSF工作人员的合作将导致在黑水河上安装一个流量计监测站,该监测站毗邻NYSCenter,为西弗吉尼亚州的初中和高中学生提供水文教育。这项合作将支持纽约科学基金会的使命,即培养和保持学生对STEM领域的兴趣,提高高中保留率和追求中学后STEM教育。气候变化正在增加大气温度,改变地下水和溪流的热模式,导致水质和生态多样性下降。地表沃茨的热状态受地下水及其与地表的连通性的影响很大,这可以通过比较空气和水流温度记录来识别。通过正弦波回归的成对空气-水温分析是表征空气温度和地表水温之间关系的一种方法,以阐明地下水对流域水力学、冷水栖息地避难所和地下水温度对气候变化的响应的贡献。最近的研究主要集中在模拟每年成对的空气/水的温度信号,以评估地下水的作用,在传播空气温度流水从子流域到大陆尺度。这些正弦回归研究的结果侧重于通过比较气温和水温记录的振幅比(正弦曲线峰值高度)和相位滞后信号(峰值之间的时间)来确定地下水对地表水的输入以及地表水对气候变化的最终反应。较深的地下水签名显示年温度变化不大,有模糊的振幅比和相位滞后,而浅层地下水签名显示高振幅比和可测量的相位滞后的顺序天。然而,目前的模型没有充分考虑地下水-地表水的相互作用,影响流温度。这些过程取决于含水层的特性,如含水层厚度、孔隙度、导水率以及基岩类型和深度。本研究将利用Fernow实验森林在西弗吉尼亚州,以提高热流模型的效率在小型和中型流域收集新的地下水温度测量,评估不同基岩地质在同一流域的影响,并探讨这些模型的效率在水文连接,嵌套流域和流域中存在的空气和流温度记录跨越几十年。这项研究将增进关于地下水对它们所排入的源头流域和中间流域的贡献以及这些流域对气候变化的脆弱性的认识。目前的模型(正弦回归)被应用于大型,大陆规模的流域认识到当地水文地质和地质对地下水行为的重要性,以及随后对地表流温度模式的影响。然而,还没有研究集中表征地表水文,水文地质和基岩地质的小流域和所有这些因素对流温度模式的贡献。这项研究将填补这一空白,并强调在对地表进行预测时表征地下的重要性。该项目由地球科学博士后奖学金项目、激励竞争性研究的既定项目(EPSCoR)和水文科学项目共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jill Riddell其他文献
Jill Riddell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Klotho/PF4轴探讨养命开心益智方“补肾兼补血”治疗阿尔茨海默病的作用机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
线粒体转移诱导的miMOMP调控肺泡上皮细胞命运在PF中的作用与机制研究
- 批准号:2025JJ60598
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
负载oe-HGF-ADMSCs的PF127水凝胶对创面无疤痕愈合的效果评估及其机制研究
- 批准号:2025JJ80442
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
血小板源性PF4介导疾病相关小胶质细胞活化在阿尔茨海默症发病中的作用及干预研究
- 批准号:2024Y9134
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
PF-4作为间充质干细胞关键物质靶向抑制神经细胞SLC14A1改善脑
衰老的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于毒蛇咬伤人群队列探究 PF4 和 TM 对溃疡坏死预警与预
后价值的研究
- 批准号:2024JJ9407
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
PF4 抑制肠道病毒 EVD68 复制的作用机制研
究
- 批准号:Q24C010006
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于PF-06882961分子骨架的不同空间构型与生物活性关系研究
- 批准号:CSTB2023NSCQ-MSX1091
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
成人免疫性血小板减少症(ITP)中血小板因子4(PF4)通过调节CD4+T淋巴细胞糖酵解水平影响Th17/Treg平衡的病理机制研究
- 批准号:82370133
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
活性吲哚生物碱(-)-citrinadin A-B和(+)-PF1270 A-C的集群式不对称全合成研究
- 批准号:22371100
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
相似海外基金
Postdoctoral Fellowship: EAR-PF: Assessing the net climate impact of tropical peatland restoration: the role of methane
博士后奖学金:EAR-PF:评估热带泥炭地恢复对气候的净影响:甲烷的作用
- 批准号:
2305578 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Taxon-Specific Cross-Scale Responses to Aridity Gradients through Time and across Space in the NW Great Basin of the United States
博士后奖学金:EAR-PF:美国西北部大盆地随时间和空间的干旱梯度的分类单元特异性跨尺度响应
- 批准号:
2305325 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Establishing a new eruption classification with a multimethod approach
博士后奖学金:EAR-PF:用多种方法建立新的喷发分类
- 批准号:
2305462 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Petrochronometers as provenance proxies: implications for the spatio-temporal evolution of continental collision to escape
博士后奖学金:EAR-PF:石油测时计作为起源代理:对大陆碰撞逃逸的时空演化的影响
- 批准号:
2305217 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Linking soil nitrogen enrichment to mineral weathering and associated organic matter persistence
博士后奖学金:EAR-PF:将土壤氮富集与矿物风化和相关有机物持久性联系起来
- 批准号:
2305518 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Career: The Complexity pf Quantum Tasks
职业:量子任务的复杂性
- 批准号:
2339711 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Postdoctoral Fellowship: EAR-PF: Does topographic stress connect subsurface to surface through influencing bedrock strength, clast size, and landslides?
博士后奖学金:EAR-PF:地形应力是否通过影响基岩强度、碎屑尺寸和山体滑坡将地下与地表连接起来?
- 批准号:
2305448 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
PF-ILDのフラクタル解析とCNN学習モデルを用いた画像診断研究
基于PF-ILD分形分析和CNN学习模型的图像诊断研究
- 批准号:
24K10916 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Postdoctoral Fellowship: EAR-PF: Understanding the Mechanics of Caldera Collapse Eruptions
博士后奖学金:EAR-PF:了解火山口塌陷喷发的机制
- 批准号:
2305163 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award
Postdoctoral Fellowship: EAR-PF: Linking the past to the future: Using PETM fluvial records to understand the effects of climate change on rivers
博士后奖学金:EAR-PF:连接过去与未来:利用 PETM 河流记录了解气候变化对河流的影响
- 批准号:
2305463 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship Award