Model Theory and Definable Additive Combinatorics
模型理论和可定义的加性组合学
基本信息
- 批准号:2204787
- 负责人:
- 金额:$ 10.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-11-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research in this project concerns a branch of mathematical logic called model theory, which studies mathematical structures at the linguistic level, and classifies structures according the complexity of their behavior with respect to a fixed choice of mathematical language. The tools for testing whether a mathematical structures is suitable for classification are various hypotheses called "dividing lines", which forbid some fixed pattern in the behavior of a structure. A main focus of this project is one such dividing line called VC-dimension, which originated in machine learning, and uses ideas from graph theory to measure randomness in mathematical objects. In model theory, this notion emerged in the study of so-called "NIP theories". Conant will apply this model theoretic framework to questions in group theory, from both the discrete and topological perspectives, and also in the newer field of arithmetic combinatorics, which is a fusion of algebra, analysis, and discrete math. A large part of past research in model theory has focused on structures which exhibit tameness at the global level, in the sense that every definable relation in the structure omits a combinatorial configuration of some fixed type. This research focuses on the local level, in which one analyzes a single tame relation inside an otherwise complicated structure. A major aim is to develop an algebraic theory of NIP formulas in arbitrary groups, which continues prior research of Conant and Pillay in the case of pseudofinite groups. A second aim is to extend this work on pseudofinite groups outside of the NIP environment. This setting is suitable for applications to arithmetic combinatorics in finite groups, for example previous research of Conant, Pillay, and Terry on tame arithmetic regularity. In the proposed research, Conant will use Lie theory and representation theory to develop arithmetic regularity in the pseudofinite setting without extra tameness assumptions. The goal is to give a model theoretic account of arithmetic regularity results of Green and Tao, and extend these results to non-commutative groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的研究涉及数理逻辑的一个分支,称为模型理论,它在语言水平上研究数学结构,并根据其行为的复杂性对结构进行分类,相对于固定的数学语言选择。测试一个数学结构是否适合分类的工具是各种各样的被称为“分界线”的假设,它们禁止一个结构的行为中的某些固定模式。该项目的主要焦点是一条名为VC维度的分界线,它起源于机器学习,并使用图论的思想来衡量数学对象的随机性。在模型论中,这个概念出现在所谓的“NIP理论”的研究中。Conant将把这个模型理论框架应用于群论中的问题,从离散和拓扑的角度来看,也应用于算术组合学的较新领域,这是代数,分析和离散数学的融合。过去模型理论研究的很大一部分集中在全局水平上表现出驯服的结构上,在这个意义上,结构中的每一个可定义的关系都省略了某种固定类型的组合配置。本研究的重点是局部层面,其中一个分析一个单一的驯服关系内,否则复杂的结构。一个主要的目标是发展一个代数理论的NIP公式在任意群,继续先前的研究的情况下,伪有限群的科南特和皮莱。第二个目标是扩展这项工作的伪有限群以外的NIP环境。这种设置适用于有限群中的算术组合学,例如科南特、皮莱和特里以前对驯服算术正则性的研究。在拟议的研究中,科南特将使用李理论和表示理论来开发伪有限设置中的算术正则性,而无需额外的驯服假设。其目标是给一个模型理论帐户的算术规律性结果的绿色和陶,并将这些结果扩展到非交换groups.This奖反映了NSF的法定使命,并已被认为是值得支持的,通过评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantitative structure of stable sets in arbitrary finite groups
任意有限群中稳定集的定量结构
- DOI:10.1090/proc/15479
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Conant, Gabriel
- 通讯作者:Conant, Gabriel
Keisler measures in the wild
凯斯勒野外测量
- DOI:10.2140/mt.2023.2.1
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Conant, Gabriel;Gannon, Kyle;Hanson, James
- 通讯作者:Hanson, James
Approximate subgroups with bounded VC-dimension
具有有界 VC 维数的近似子群
- DOI:10.1007/s00208-022-02524-3
- 发表时间:2024
- 期刊:
- 影响因子:1.4
- 作者:Conant, Gabriel;Pillay, Anand
- 通讯作者:Pillay, Anand
Continuous stable regularity
持续稳定的规律性
- DOI:10.1112/jlms.12822
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Chavarria, Nicolas;Conant, Gabriel;Pillay, Anand
- 通讯作者:Pillay, Anand
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gabriel Conant其他文献
THREE SURPRISING INSTANCES OF DIVIDING
三个令人惊讶的分裂实例
- DOI:
10.1017/jsl.2024.20 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Gabriel Conant;Alex Kruckman - 通讯作者:
Alex Kruckman
Gabriel Conant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gabriel Conant', 18)}}的其他基金
Model Theory and Definable Additive Combinatorics
模型理论和可定义的加性组合学
- 批准号:
1855503 - 财政年份:2019
- 资助金额:
$ 10.91万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 10.91万 - 项目类别:
Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 10.91万 - 项目类别:
Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 10.91万 - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 10.91万 - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 10.91万 - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 10.91万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 10.91万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 10.91万 - 项目类别:
Standard Grant














{{item.name}}会员




