Nonlinear Waves in Lattices and Metamaterials

晶格和超材料中的非线性波

基本信息

  • 批准号:
    2204880
  • 负责人:
  • 金额:
    $ 20.9万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

The project investigates the dynamics of transition fronts and other nonlinear waves in spatially discrete systems. These waves play a major role in transporting energy in lattices and mechanical metamaterials, engineered structures that exploit instabilities of their components to yield a desired collective response. The project aims to advance the fundamental understanding of the energy transfer phenomena associated with the wave propagation. This information is important for designing novel mechanical metamaterials with desired characteristics that enable applications in soft robotics, morphing surfaces, reconfigurable devices, and mechanical logic, among others. Due to the ubiquity of nonlinear transition waves in physical and biological settings, understanding their properties, as well as the conditions for their existence and stability, is relevant in fields such as mechanical engineering, materials science, condensed matter physics, and biophysics. The project will provide research training opportunities for doctoral students.This project will study traveling transition waves in a Fermi-Pasta-Ulam lattice and its various extensions that include viscous dissipation, diatomic structure, and long-range interactions. The intent is to provide insights into the effects of nonlinearity, nonconvexity, dissipation, heterogeneity, and nonlocality on the existence and stability of different types of transition waves and the extent to which some of these effects can be captured by quasicontinuum approximations. Open fundamental questions in the dynamics of transition waves will be addressed, including the dispersive mechanism of energy transfer inside the transition front of a supersonic kink and the structure of the kinetic relations for subsonic kinks. The research program involves the development of analytical and numerical approaches, such as representing traveling waves as fixed points of a nonlinear map and constructing semi-analytical solutions of the problems with piecewise linear nearest-neighbor interactions, that will be useful in other studies of discrete nonlinear systems. The constructed solutions will serve as benchmark cases for testing quasicontinuum approximations and inform the investigation of the fully nonlinear problems. Numerical explorations of the consequences of instability will clarify the solution structure and possibly reveal bifurcations of other nonlinear waveforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了空间离散系统中过渡锋和其他非线性波的动力学。这些波在晶格和机械超材料中的能量传输中起着重要作用,这些工程结构利用其组件的不稳定性来产生期望的集体响应。该项目旨在促进对与波传播相关的能量传递现象的基本理解。这些信息对于设计具有所需特性的新型机械超材料非常重要,这些材料可以应用于软机器人、变形表面、可重构设备和机械逻辑等领域。由于非线性过渡波在物理和生物环境中无处不在,了解它们的性质,以及它们存在和稳定的条件,在机械工程、材料科学、凝聚态物理和生物物理学等领域都是相关的。本项目将为博士生提供科研培训机会。本项目将研究Fermi-Pasta-Ulam晶格中的行跃迁波及其各种扩展,包括粘性耗散、双原子结构和远程相互作用。目的是深入了解非线性、非凸性、耗散、非均匀性和非局域性对不同类型过渡波的存在和稳定性的影响,以及准连续统近似可以捕捉其中一些影响的程度。在过渡波动力学开放的基本问题将被解决,包括能量转移的色散机制内的超音速扭结和亚音速扭结的动力学关系的结构。该研究计划涉及解析和数值方法的发展,例如将行波表示为非线性映射的不动点,以及构造具有分段线性最近邻相互作用的问题的半解析解,这将在其他离散非线性系统的研究中有用。所构造的解将作为测试准连续统近似的基准案例,并为全非线性问题的研究提供信息。对不稳定后果的数值探索将阐明解的结构,并可能揭示其他非线性波形的分岔。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anna Vainchtein其他文献

Dynamics of Phase Transitions and Hysteresis in a Viscoelastic Ericksen's Bar on an Elastic Foundation
  • DOI:
    10.1023/a:1007661727193
  • 发表时间:
    1999-01-01
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Anna Vainchtein
  • 通讯作者:
    Anna Vainchtein
Regimes of two-dimensional energy channeling in the inertially coupled unit-cell model subjected to an asymmetric potential
  • DOI:
    10.1016/j.jsv.2019.03.019
  • 发表时间:
    2019-08-18
  • 期刊:
  • 影响因子:
  • 作者:
    Kirill Vorotnikov;Yuli Starosvetsky;Anna Vainchtein
  • 通讯作者:
    Anna Vainchtein
Moving discrete breathers in a math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e1527" altimg="si5.svg" class="math"miβ/mi/math-FPU lattice revisited
Beyond kinetic relations
  • DOI:
    10.1007/s00161-010-0167-4
  • 发表时间:
    2010-09-03
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Lev Truskinovsky;Anna Vainchtein
  • 通讯作者:
    Anna Vainchtein
Erratum to: Shocks versus kinks in a discrete model of displacive phase transitions
  • DOI:
    10.1007/s00161-012-0276-3
  • 发表时间:
    2012-11-03
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Evgeni Trofimov;Anna Vainchtein
  • 通讯作者:
    Anna Vainchtein

Anna Vainchtein的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anna Vainchtein', 18)}}的其他基金

Collaborative Research: Stability of Nonlinear Wave Structures in Lattices
合作研究:晶格中非线性波结构的稳定性
  • 批准号:
    1808956
  • 财政年份:
    2018
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Nonlinear waves in nonintegrable lattices
不可积晶格中的非线性波
  • 批准号:
    1506904
  • 财政年份:
    2015
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Kinetics of lattice phase transitions
晶格相变动力学
  • 批准号:
    1007908
  • 财政年份:
    2010
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
CAREER: Lattice models of martensitic phase transitions
职业:马氏体相变的晶格模型
  • 批准号:
    0443928
  • 财政年份:
    2005
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
ADVANCE Fellows Award: Thermomechanical Models of Martensitic Phase Transitions
高级研究员奖:马氏体相变的热机械模型
  • 批准号:
    0137634
  • 财政年份:
    2002
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

RUI: Dispersive Shock Waves in Nonlinear Lattices: Theory to Application
RUI:非线性晶格中的色散冲击波:理论到应用
  • 批准号:
    2107945
  • 财政年份:
    2021
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Quest for Mechanical Rogue Waves in One-dimensional Discrete Lattices
寻找一维离散晶格中的机械流氓波
  • 批准号:
    1933729
  • 财政年份:
    2019
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Nonlinear waves in nonintegrable lattices
不可积晶格中的非线性波
  • 批准号:
    1506904
  • 财政年份:
    2015
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Standard Grant
Shock Waves in One-Dimensional Lattices
一维晶格中的冲击波
  • 批准号:
    464599-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 20.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
  • 批准号:
    238931-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Discovery Grants Program - Individual
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
  • 批准号:
    238931-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Discovery Grants Program - Individual
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
  • 批准号:
    238931-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Discovery Grants Program - Individual
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
  • 批准号:
    238931-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Discovery Grants Program - Individual
Basic Studies on Control of the Terahertz Waves-Magnetic Flux Quanta-Electron Pairs Interactions in Superconducting Super-lattices and for Applications of them to Devices
超导超晶格中太赫兹波-磁通量子-电子对相互作用控制及其器件应用的基础研究
  • 批准号:
    19560309
  • 财政年份:
    2007
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
  • 批准号:
    238931-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 20.9万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了