Traveling localized waves in discrete lattices
在离散晶格中传播局域波
基本信息
- 批准号:238931-2006
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2007
- 资助国家:加拿大
- 起止时间:2007-01-01 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Interplay between nonlinearity and periodicity is the focus of recent studies in different branches of modern applied mathematics and nonlinear physics. Our research program is in mathematical analysis of localized structures in discrete and continuous dynamical systems. We aim to study nonlinear models expressed by the differential advanced-delay equations, difference equations and partial differential equations in the context of applications to photonic band-gap engineering, nonlinear optics, and atomic physics of Bose-Einstein condensates. The research program consists of several specific goals: (1) justification of the reduced models for periodic systems, (2) persistence of traveling waves in discrete lattices, (3) bifurcations and stability of discrete three-dimensional vortices. The results of the proposed research will contribute towards a new topic in applied mathematics that is the theory of traveling waves in discrete lattices with the gauge and reversibility symmetries. The outcomes will be significant to many research groups that study theoretically and experimentally optically trapped Bose-Einstein condensates, photorefractive crystal lattices, and coupled optical waveguides.
非线性和周期性之间的相互作用是现代应用数学和非线性物理不同分支最近研究的焦点。我们的研究项目是离散和连续动力系统中局域结构的数学分析。我们的目标是在玻色-爱因斯坦凝聚体的光子带隙工程、非线性光学和原子物理的应用背景下,研究由微分超前延迟方程、差分方程和偏微分方程组表示的非线性模型。研究程序包括几个具体的目标:(1)证明周期系统的简化模型,(2)离散格子中行波的持久性,(3)离散三维涡旋的分叉和稳定性。所提出的研究结果将有助于应用数学中的一个新课题,即具有规范对称性和可逆性对称性的离散晶格中的行波理论。这一结果将对许多从理论和实验上研究玻色-爱因斯坦凝聚体、光折变晶格和耦合光波导的研究小组具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pelinovsky, Dmitry其他文献
Global Well-Posedness of the Short-Pulse and Sine-Gordon Equations in Energy Space
- DOI:
10.1080/03605300903509104 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:1.9
- 作者:
Pelinovsky, Dmitry;Sakovich, Anton - 通讯作者:
Sakovich, Anton
Rigorous justification of the short-pulse equation
- DOI:
10.1007/s00030-012-0208-8 - 发表时间:
2013-06-01 - 期刊:
- 影响因子:1.2
- 作者:
Pelinovsky, Dmitry;Schneider, Guido - 通讯作者:
Schneider, Guido
WAVE BREAKING IN THE OSTROVSKY-HUNTER EQUATION
- DOI:
10.1137/09075799x - 发表时间:
2010-01-01 - 期刊:
- 影响因子:2
- 作者:
Liu, Yue;Pelinovsky, Dmitry;Sakovich, Anton - 通讯作者:
Sakovich, Anton
GLOBAL EXISTENCE OF SMALL-NORM SOLUTIONS IN THE REDUCED OSTROVSKY EQUATION
- DOI:
10.3934/dcds.2014.34.557 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:1.1
- 作者:
Grimshaw, Roger;Pelinovsky, Dmitry - 通讯作者:
Pelinovsky, Dmitry
Convergence of the Adomian Decomposition Method for Initial-Value Problems
- DOI:
10.1002/num.20549 - 发表时间:
2011-07-01 - 期刊:
- 影响因子:3.9
- 作者:
Abdelrazec, Ahmed;Pelinovsky, Dmitry - 通讯作者:
Pelinovsky, Dmitry
Pelinovsky, Dmitry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pelinovsky, Dmitry', 18)}}的其他基金
Peaked and rogue waves in nonlinear partial differential equations
非线性偏微分方程中的尖峰波和异常波
- 批准号:
RGPIN-2020-07049 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Peaked and rogue waves in nonlinear partial differential equations
非线性偏微分方程中的尖峰波和异常波
- 批准号:
RGPIN-2020-07049 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Peaked and rogue waves in nonlinear partial differential equations
非线性偏微分方程中的尖峰波和异常波
- 批准号:
RGPIN-2020-07049 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
- 批准号:
RGPIN-2014-05652 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
- 批准号:
RGPIN-2014-05652 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
- 批准号:
RGPIN-2014-05652 - 财政年份:2017
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
- 批准号:
RGPIN-2014-05652 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
- 批准号:
RGPIN-2014-05652 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear wave propagation in lattices
晶格中的非线性波传播
- 批准号:
RGPIN-2014-05652 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Evolution of localized modes in nonlinear dispersive equations
非线性色散方程中局域模态的演化
- 批准号:
238931-2011 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Computational Framework to Enhance Antenna-based Electromagnetic Imaging
增强基于天线的电磁成像的计算框架
- 批准号:
10667975 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Shock-like focusing of inertial waves - the localized generation of turbulence
惯性波的冲击式聚焦——湍流的局部产生
- 批准号:
407316090 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Research Grants
Internal Solitary Waves Incident upon Localized Topography
局部地形上的内部孤立波入射
- 批准号:
482796-2015 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
University Undergraduate Student Research Awards
Negative Refraction and Localized Resonance of Guided Elastic Waves
导弹性波的负折射和局域共振
- 批准号:
1335426 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
- 批准号:
238931-2006 - 财政年份:2010
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Periodic arrangement of metal nanoparticles by use of radiation pressure of ultrasonic waves and the excitation of localized surface plasmons
利用超声波辐射压和局域表面等离子体激元的激发实现金属纳米颗粒的周期性排列
- 批准号:
22560045 - 财政年份:2010
- 资助金额:
$ 1.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
- 批准号:
238931-2006 - 财政年份:2009
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Internal waves impinging on near-critical slopes: multiscale numerical quantification of localized mixing and exchange with the interior
合作研究:撞击近临界斜坡的内波:局部混合和与内部交换的多尺度数值量化
- 批准号:
0825705 - 财政年份:2008
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Traveling localized waves in discrete lattices
在离散晶格中传播局域波
- 批准号:
238931-2006 - 财政年份:2008
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Internal waves impinging on near-critical slopes: multiscale numerical quantification of localized mixing and exchange with the interior
合作研究:撞击近临界斜坡的内波:局部混合和与内部交换的多尺度数值量化
- 批准号:
0825997 - 财政年份:2008
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant