Theory and Application of Temporal Network Embedding
时态网络嵌入理论与应用
基本信息
- 批准号:2204936
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Many complex systems in the real world can be modeled as networks. In fact, many networks vary over time. For example, contact networks change from one shape to another as people move around to meet different people. Friendship networks also vary over time on a longer timescale. Such temporal (i.e., time-varying) network data have been increasingly available, and mathematically founded methods that can efficiently summarize complex temporal network data to help enhance intuitive understanding of the data are desirable. The Principal Investigator (PI) will develop methods to map temporal network data to trajectories in a space. Specifically, the methods will enable representation of the network at a given time point succinctly as a point on the trajectory. This is a drastic reduction, but in this manner aims to capture gross properties of the data and potentially use them for data mining tasks such as visualization, anomaly detection, and discovery of hidden periodicity. The PI will then build mathematical foundations of the proposed methods and apply them to empirical data. The proposed methods are expected to find applications in online social network services, financial transactions, bibliographic citation data, neuroimaging data, and climate temporal networks, to name a few. Furthermore, the project outcomes are expected to encourage researchers in data science and engineering to work on various algorithms related to network embedding (e.g., use of deep learning architecture). In this manner, the project relates to multiple research communities and industries. The methods to be developed in this project are temporal network embedding (TNE) methods. In contrast with most TNE methods available to date, in which one embeds nodes into a latent space, the class of TNE methods the PI will pursue is a mapping from the space of networks to a low-dimensional latent space. A fundamental challenge to TNE is that empirical data usually come in the form of a set of time-stamped events between pairs of nodes, which would generate an extremely sparse network at any given time, hampering sensible network analyses. To overcome this situation, the PI will combine the modeling framework called tie-decay temporal networks with a Nystrom family of general-purpose dimension reduction methods to establish a family of TNE methods. This particular combination of techniques will allow the PI to narrow down the methodological choice, such as which dimension reduction methods, network distance measures, and tie-decay functions should be used, as well as to facilitate efficient computations and mathematical investigations. The PI will then develop mathematical foundations of the proposed methods such as continuity, responses to Markovian inputs, and sensitivity to perturbation in the input data. Finally, the PI will showcase the methods by applying them to social and financial empirical data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
真实的世界中的许多复杂系统都可以建模为网络。事实上,许多网络随着时间的推移而变化。例如,当人们四处走动以结识不同的人时,联系网络会从一种形状变成另一种形状。友谊网络在更长的时间尺度上也随时间而变化。这种时间(即,时变的)网络数据已经越来越多地可用,并且期望能够有效地概括复杂的时间网络数据以帮助增强对数据的直观理解的数学上建立的方法。主要研究者(PI)将开发将时间网络数据映射到空间轨迹的方法。具体而言,这些方法将使网络在给定时间点简洁地表示为轨迹上的一个点。这是一个急剧的减少,但以这种方式旨在捕获数据的总体属性,并可能将它们用于数据挖掘任务,如可视化,异常检测和隐藏周期性的发现。然后,PI将建立所提出的方法的数学基础,并将其应用于经验数据。所提出的方法有望在在线社交网络服务,金融交易,书目引用数据,神经成像数据和气候时间网络中找到应用程序,仅举几例。此外,项目成果预计将鼓励数据科学和工程领域的研究人员研究与网络嵌入相关的各种算法(例如,使用深度学习架构)。通过这种方式,该项目涉及多个研究社区和行业。该项目中要开发的方法是时间网络嵌入(TNE)方法。与迄今为止可用的大多数TNE方法(其中将节点嵌入到潜在空间中)相比,PI将追求的TNE方法类是从网络空间到低维潜在空间的映射。TNE面临的一个根本挑战是,经验数据通常以节点对之间的一组时间戳事件的形式出现,这将在任何给定时间生成一个极其稀疏的网络,阻碍合理的网络分析。为了克服这种情况,PI将联合收割机将称为领带衰减时态网络的建模框架与Nystrom系列通用降维方法相结合,以建立一系列TNE方法。这种特殊的技术组合将允许PI缩小方法的选择范围,例如应该使用哪些降维方法,网络距离测量和领带衰减函数,以及促进有效的计算和数学研究。然后,PI将开发所提出的方法的数学基础,如连续性,对马尔可夫输入的响应,以及对输入数据扰动的敏感性。最后,PI将通过将其应用于社会和金融经验数据来展示这些方法。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Embedding and Trajectories of Temporal Networks
- DOI:10.1109/access.2023.3268030
- 发表时间:2022-08
- 期刊:
- 影响因子:3.9
- 作者:Chanon Thongprayoon;L. Livi;N. Masuda
- 通讯作者:Chanon Thongprayoon;L. Livi;N. Masuda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naoki Masuda其他文献
Molecular cloning of cDNA encoding 20 kDa variant human growth hormone and the alternative splicing mechanism.
编码 20 kDa 变体人类生长激素的 cDNA 的分子克隆和选择性剪接机制。
- DOI:
10.1016/0167-4781(88)90062-0 - 发表时间:
1988 - 期刊:
- 影响因子:0
- 作者:
Naoki Masuda;Masanori Watahiki;Minoru Tanaka;M. Yamakawa;Ken Shimizu;J. Nagai;K. Nakashima - 通讯作者:
K. Nakashima
Emergence of feedforward networks and entrainment in oscillator networks via abiological synaptic plasticity rule
通过非生物突触可塑性规则出现前馈网络和振荡器网络中的夹带
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Taro Ueno;Naoki Masuda;Naoki Masuda;Naoki Masuda;Naoki Masuda and Brent Doiron;Naoki Masuda and Hiroshi Kori - 通讯作者:
Naoki Masuda and Hiroshi Kori
Bio-inspired water distribution network design
仿生供水管网设计
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Noha Abdel-Mottaleb;Kashin Sugishita;Naoki Masuda;and Qiong Zhang - 通讯作者:
and Qiong Zhang
Molecular Dynamics Study on Collision Cascade Dynamics for Sputtering of Lennard-Jones Particles
伦纳德-琼斯粒子溅射碰撞级联动力学的分子动力学研究
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Teruyoshi Kobayashi;Naoki Masuda;Nicolas Mauchamp - 通讯作者:
Nicolas Mauchamp
A Fall in Ventricular Fibrillation Just after Skin Incision in a Hemodialysis-patient
血液透析患者皮肤切开后心室颤动下降
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Takao Hirata;N. Matsuda;Takashi Tamura;Naoki Masuda;S. Yamashita;A. Yonei - 通讯作者:
A. Yonei
Naoki Masuda的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naoki Masuda', 18)}}的其他基金
Floquet Theory for Stochastic Temporal Networks and Optimization Theory for the Design of Schedules for COVID-19
随机时间网络的 Floquet 理论和 COVID-19 时间表设计的优化理论
- 批准号:
2052720 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Development of motion picture recording and measurement technique of femtosecond light pulse propagation with ultrahigh-temporal resolution and long recordable time and its application
超高时间分辨率、长记录时间的飞秒光脉冲传播运动图像记录与测量技术开发及应用
- 批准号:
23H01422 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Application of spatio-temporal transcriptome analysis to elucidate osseointegration
应用时空转录组分析阐明骨整合
- 批准号:
23K16066 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Comprehensive multiomics analysis to elucidate temporal and spatial pathophysiology of respiratory diseases for their application to drug discovery.
综合多组学分析,阐明呼吸系统疾病的时空病理生理学,以应用于药物发现。
- 批准号:
22KJ1190 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Developing Conjugate Models for Exact MCMC free Bayesian Inference with Application to High-Dimensional Spatio-Temporal Data
开发用于精确 MCMC 免费贝叶斯推理的共轭模型并应用于高维时空数据
- 批准号:
2310756 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
An embedded brain-like computer system in spatio-temporal domain and its application to a home service robot
嵌入式时空域类脑计算机系统及其在家庭服务机器人中的应用
- 批准号:
23H03468 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spatio-temporal dynamics analysis of cell death induction due to disruption of biometal homeostasis and its application to radiotherapy
生物金属稳态破坏诱导细胞死亡的时空动力学分析及其在放射治疗中的应用
- 批准号:
22H03740 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Studies on fundamental blockchain technology for spatio-temporal permanent certification system and its application to countering disinformation
时空永久认证体系的区块链基础技术研究及其在反虚假信息中的应用
- 批准号:
20K11797 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ATD: Next Generation Statistical Learning Theory and Methods for Multimodal Spatio-Temporal Data with Application to Computer Vision
ATD:下一代多模态时空数据统计学习理论和方法及其在计算机视觉中的应用
- 批准号:
1924724 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Modeling of spatio-temporal dynamics of neuropil signals and its application to automatic cell detectors
神经纤维信号时空动力学建模及其在自动细胞检测器中的应用
- 批准号:
19H04203 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of ultra high-speed silicon image sensor with temporal resolution of 10Gfps and its application to advanced measurement technology
时间分辨率10Gfps超高速硅图像传感器的研制及其在先进测量技术中的应用
- 批准号:
19H02204 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




