Floquet Theory for Stochastic Temporal Networks and Optimization Theory for the Design of Schedules for COVID-19

随机时间网络的 Floquet 理论和 COVID-19 时间表设计的优化理论

基本信息

  • 批准号:
    2052720
  • 负责人:
  • 金额:
    $ 24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

No problem facing humanity is more severe and more urgent than COVID-19, and the shelter-in-place approach to social distancing has decimated the U.S. economy. COVID-19 social distancing may be required for a long period for a multitude of reasons including the uncertainty of the effectiveness of vaccines on emerging strains. Therefore, it is desired to identify mathematically principled solutions that strike an optimal balance between productivity and risk to infection through developing a “science and engineering for social distancing”. Thus motivated, the PIs will develop (1) novel mathematical theory to better and more rigorously understand epidemic spreading on social-contact networks that undergo weekly and/or daily cycles; and (2) optimization theory to design realistic social-contact networks (e.g., using curfews for community and course scheduling for academic institutions) that both mitigate pandemics and allow an acceptable level of social/economic activity. These techniques will be applied to social-network datasets related to COVID-19 to validate theory and obtain practical knowledge. These mathematical and computational tools and related datasets will support policy makers for educational institutions, large companies, and governing bodies as they manage the economic and health impacts of COVID-19 as well as future pandemics. The first goal of the project is to extend Floquet theory of ordinary differential equations to (a) characterize epidemic spreading on social-contact networks that are stochastic, time-varying, and periodic; (b) identify and analyze novel behaviors for disease dynamics that arise because the social-network’s periodicity and the disease progression change at similar time scales; and (c) study the effects of network structures that contribute to disease localization (e.g., in hub nodes and communities in the network). These questions remain underexplored for dynamically changing networks. The second goal of the project is to develop network optimization theory to design mathematically principled social-distancing protocols that can both suppress COVID-19 spreading and also maintain an acceptable level of economic and social activity. Specifically, network perturbation and optimization techniques for Floquet decompositions will be developed, and then they will be combined with non-convex optimization algorithms. To date, mathematical or even computational foundations for social-contact engineering in dynamically changing contact networks due to human activity are lacking. Finally, these techniques will be applied to social-network datasets related to COVID-19 which provide summarized and anonymized movements of individuals.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人类面临的问题没有比COVID-19更严重、更紧迫的了,而社交距离的就地庇护方法已经摧毁了美国经济。COVID-19社交距离可能需要一段长时间,原因有很多,包括疫苗对新出现菌株的有效性的不确定性。因此,希望通过开发“社会距离科学和工程”来确定数学原理的解决方案,这些解决方案在生产率和感染风险之间取得最佳平衡。因此,PI将开发(1)新的数学理论,以更好地和更严格地理解在经历每周和/或每日周期的社交接触网络上传播的流行病;以及(2)优化理论,以设计现实的社交接触网络(例如,对社区实行宵禁,对学术机构实行课程安排),既减轻了流行病的影响,又使社会/经济活动达到可接受的水平。这些技术将应用于与COVID-19相关的社交网络数据集,以验证理论并获得实践知识。这些数学和计算工具以及相关数据集将为教育机构、大公司和管理机构的政策制定者提供支持,帮助他们管理COVID-19以及未来流行病的经济和健康影响。该项目的第一个目标是扩展常微分方程的Floquet理论,以(a)描述随机、时变和周期性的社会接触网络上的流行病传播;(B)识别和分析由于社会网络的周期性和疾病进展在相似的时间尺度上变化而产生的疾病动力学的新行为;以及(c)研究有助于疾病定位的网络结构的影响(例如,在网络中的集线器节点和社区中)。对于动态变化的网络,这些问题仍然没有得到充分的研究。该项目的第二个目标是开发网络优化理论,以设计数学原则的社交距离协议,既可以抑制COVID-19传播,也可以保持可接受的经济和社会活动水平。具体而言,网络扰动和Floquet分解的优化技术将开发,然后将它们与非凸优化算法相结合。到目前为止,由于人类活动而动态变化的接触网络中的社会接触工程的数学甚至计算基础是缺乏的。最后,这些技术将被应用于与COVID-19相关的社交网络数据集,这些数据集提供了个人活动的摘要和匿名。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simplicial cascades are orchestrated by the multidimensional geometry of neuronal complexes
  • DOI:
    10.1038/s42005-022-01062-3
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Bengi Kilic;D. Taylor
  • 通讯作者:
    Bengi Kilic;D. Taylor
Coupling Asymmetry Optimizes Collective Dynamics Over Multiplex Networks
Dimension reduction of dynamical systems on networks with leading and non-leading eigenvectors of adjacency matrices
具有邻接矩阵的前导和非前导特征向量的网络动力系统的降维
  • DOI:
    10.1103/physrevresearch.4.023257
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Masuda, Naoki;Kundu, Prosenjit
  • 通讯作者:
    Kundu, Prosenjit
Social network analysis of manga: similarities to real-world social networks and trends over decades
漫画的社交网络分析:与现实世界社交网络的相似之处以及几十年来的趋势
  • DOI:
    10.1007/s41109-023-00604-0
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Sugishita, Kashin;Masuda, Naoki
  • 通讯作者:
    Masuda, Naoki
Grass-roots optimization of coupled oscillator networks
耦合振荡器网络的基层优化
  • DOI:
    10.1103/physreve.106.034202
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Chamlagai, Pranick R.;Taylor, Dane;Skardal, Per Sebastian
  • 通讯作者:
    Skardal, Per Sebastian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naoki Masuda其他文献

Molecular cloning of cDNA encoding 20 kDa variant human growth hormone and the alternative splicing mechanism.
编码 20 kDa 变体人类生长激素的 cDNA 的分子克隆和选择性剪接机制。
  • DOI:
    10.1016/0167-4781(88)90062-0
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoki Masuda;Masanori Watahiki;Minoru Tanaka;M. Yamakawa;Ken Shimizu;J. Nagai;K. Nakashima
  • 通讯作者:
    K. Nakashima
Emergence of feedforward networks and entrainment in oscillator networks via abiological synaptic plasticity rule
通过非生物突触可塑性规则出现前馈网络和振荡器网络中的夹带
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taro Ueno;Naoki Masuda;Naoki Masuda;Naoki Masuda;Naoki Masuda and Brent Doiron;Naoki Masuda and Hiroshi Kori
  • 通讯作者:
    Naoki Masuda and Hiroshi Kori
Bio-inspired water distribution network design
仿生供水管网设计
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noha Abdel-Mottaleb;Kashin Sugishita;Naoki Masuda;and Qiong Zhang
  • 通讯作者:
    and Qiong Zhang
Molecular Dynamics Study on Collision Cascade Dynamics for Sputtering of Lennard-Jones Particles
伦纳德-琼斯粒子溅射碰撞级联动力学的分子动力学研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Teruyoshi Kobayashi;Naoki Masuda;Nicolas Mauchamp
  • 通讯作者:
    Nicolas Mauchamp
A Fall in Ventricular Fibrillation Just after Skin Incision in a Hemodialysis-patient
血液透析患者皮肤切开后心室颤动下降
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takao Hirata;N. Matsuda;Takashi Tamura;Naoki Masuda;S. Yamashita;A. Yonei
  • 通讯作者:
    A. Yonei

Naoki Masuda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Naoki Masuda', 18)}}的其他基金

Theory and Application of Temporal Network Embedding
时态网络嵌入理论与应用
  • 批准号:
    2204936
  • 财政年份:
    2022
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Learning Theory for Large-scale Stochastic Games
职业:大规模随机博弈的学习理论
  • 批准号:
    2339240
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Continuing Grant
Stochastic Modeling of Turbulence over Rough Walls: Theory, Experiments, and Simulations
粗糙壁上湍流的随机建模:理论、实验和模拟
  • 批准号:
    2412025
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
  • 批准号:
    23K03152
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Generalized Stochastic Nash Equilibrium Framework: Theory, Computation, and Application
广义随机纳什均衡框架:理论、计算和应用
  • 批准号:
    2231863
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
Quantification of brain state transition costs based on stochastic control theory and its application to cognitive neuroscience
基于随机控制理论的大脑状态转换成本量化及其在认知神经科学中的应用
  • 批准号:
    22KJ1172
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
  • 批准号:
    23H03354
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了