Computational Statutory Reasoning
计算法定推理
基本信息
- 批准号:2204926
- 负责人:
- 金额:$ 59.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Tax law is a huge, complex body of text, paralleling how the huge, complex U.S. economy is taxed. All three branches of government continually add new text: Congress adds to the Tax Code, the IRS issues interpretations, and courts write decisions in tax cases. It is challenging if not impossible for any single human to be aware of all of tax law. This can lead to entirely-sensible tax-law authorities interacting in ways unforeseen by their authors, enabling tax-avoidance strategies used by individuals and corporations with clever tax advisors. Such strategies cost the government billions of dollars and feed public perceptions of tax unfairness. Developing artificial intelligence (AI) that can automatically understand and reason with tax-law text would have two benefits. First, tax-avoidance strategies possible with existing tax law could be identified and shut down. Second, creators of new tax-law text (congressional staffers, IRS attorneys, and judges writing opinions in tax cases) could verify that they were not inadvertently enabling new tax-avoidance strategies. The aim of this project is to develop tools to automatically understand and reason with tax-law documents. This includes tax statutes and case law. The main research questions are how to reason about which statutes apply to a given case, how new statutes potentially impact previous decided cases, and how to automatically determine whether one case constitutes precedent for another case. First, this project will build benchmark datasets to measure progress on the above research goals, relying on existing expertise in dataset curation and on open legal data. Second, recent progress on converting textual data to structures supporting automated reasoning needs to be extended to the legal domain. This will require innovations in mapping language (statutes) into machine interpretable rules as compared to extracting text into data. Third, this project will develop legal domain ontologies, schemas, and information extraction models to analyze US case law. Progress on analyzing statutes and cases will involve extending capabilities in areas such as semantic parsing, entity typing, coreference, annotation science, schema induction and inference, AI system engineering, textual inference, and domain specialized language model pre-training. The effort will lead to new ways of thinking about the creation and use of legal language, with advances in natural language processing and automated reasoning, especially in the area of few-shot learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
税法是一个庞大而复杂的文本体系,与庞大而复杂的美国经济征税方式相似。 政府的所有三个部门都在不断添加新文本:国会添加税法,国税局发布解释,法院撰写税务案件的裁决。 这是具有挑战性的,如果不是不可能的任何一个人都知道所有的税法。 这可能导致完全明智的税法当局以其作者无法预见的方式进行互动,使个人和公司能够通过聪明的税务顾问使用避税策略。 这些策略花费了政府数十亿美元,并助长了公众对税收不公平的看法。 开发能够自动理解税法文本并进行推理的人工智能(AI)有两个好处。 首先,可以识别并关闭现有税法可能存在的避税策略。 其次,新税法文本的制定者(国会工作人员、国税局律师和法官在税务案件中撰写意见)可以证明他们没有无意中促成新的避税策略。 该项目的目的是开发工具,以自动理解和推理税法文件。这包括税法和判例法。主要的研究问题是如何推理哪些法规适用于给定的情况下,如何新的法规可能会影响以前决定的案件,以及如何自动确定一个案件是否构成另一个案件的先例。首先,该项目将建立基准数据集,以衡量上述研究目标的进展情况,依靠现有的数据集管理专业知识和开放的法律的数据。其次,最近在将文本数据转换为支持自动推理的结构方面取得的进展需要扩展到法律的领域。这将需要在将语言(法规)映射到机器可解释的规则方面进行创新,而不是将文本提取到数据中。第三,这个项目将开发法律的领域本体、模式和信息提取模型来分析美国判例法。分析法规和案例的进展将涉及扩展语义解析、实体类型、共指、注释科学、模式归纳和推理、人工智能系统工程、文本推理和领域专用语言模型预训练等领域的能力。这一努力将导致对创造和使用法律的语言的新的思维方式,在自然语言处理和自动推理的进步,特别是在少数镜头学习领域。这一奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shelter Check: Proactively Finding Tax Minimization Strategies via AI
庇护所检查:通过人工智能主动寻找税收最小化策略
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:ANDREW BLAIR-STANEK, NILS HOLZENBERGER
- 通讯作者:ANDREW BLAIR-STANEK, NILS HOLZENBERGER
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Van Durme其他文献
Zero-shot Cross-lingual Transfer is Under-specified Optimization
零样本跨语言迁移是未指定的优化
- DOI:
10.18653/v1/2022.repl4nlp-1.25 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shijie Wu;Benjamin Van Durme;Mark Dredze - 通讯作者:
Mark Dredze
Adapting Coreference Resolution Models through Active Learning
通过主动学习调整共指消解模型
- DOI:
10.18653/v1/2022.acl-long.519 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Michelle Yuan;Patrick Xia;Chandler May;Benjamin Van Durme;Jordan L. Boyd - 通讯作者:
Jordan L. Boyd
On the Existence of Tacit Assumptions in Contextualized Language Models
论情境化语言模型中隐性假设的存在
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Nathaniel Weir;Adam Poliak;Benjamin Van Durme - 通讯作者:
Benjamin Van Durme
Predicate Argument Alignment using a Global Coherence Model
使用全局连贯模型进行谓词参数对齐
- DOI:
10.3115/v1/n15-1002 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Travis Wolfe;Mark Dredze;Benjamin Van Durme - 通讯作者:
Benjamin Van Durme
Adaptive Active Learning for Coreference Resolution
共指消解的自适应主动学习
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Michelle Yuan;Patrick Xia;Benjamin Van Durme;Jordan L. Boyd - 通讯作者:
Jordan L. Boyd
Benjamin Van Durme的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Van Durme', 18)}}的其他基金
Collaborative Research: The MegaAttitude Project: Investigating selection and polysemy at the scale of the lexicon
合作研究:MegaAttitude 项目:在词典范围内调查选择和多义现象
- 批准号:
1749025 - 财政年份:2018
- 资助金额:
$ 59.74万 - 项目类别:
Continuing Grant
EAGER: Combining natural language inference and data-driven paraphrasing
EAGER:结合自然语言推理和数据驱动的释义
- 批准号:
1249516 - 财政年份:2012
- 资助金额:
$ 59.74万 - 项目类别:
Standard Grant
相似海外基金
The Denial of Victimisation: An Investigation into the Eligibility of People with Criminal Records for Statutory Victim Compensation in the UK.
否认受害:对英国有犯罪记录的人获得法定受害者赔偿资格的调查。
- 批准号:
2720813 - 财政年份:2022
- 资助金额:
$ 59.74万 - 项目类别:
Studentship
"They target vulnerability not just age". Perspectives on the response of one statutory service to the sexual exploitation of adults.
“他们针对的是脆弱性,而不仅仅是年龄”。
- 批准号:
2439177 - 财政年份:2020
- 资助金额:
$ 59.74万 - 项目类别:
Studentship
Beyond 'Good Catholic Girls': Exploring the Role of Statutory RSE in Young Women's Constructions of Sexual Agency in Catholic Schools
超越“好天主教女孩”:探索法定 RSE 在天主教学校年轻女性性代理建设中的作用
- 批准号:
2400020 - 财政年份:2020
- 资助金额:
$ 59.74万 - 项目类别:
Studentship
ENGAGING WITH PLACE AND MANAGING SPACE: Transforming policy, statutory advice, management, and visitor experience in England's historic churches
参与场所和管理空间:改变英格兰历史教堂的政策、法定建议、管理和游客体验
- 批准号:
AH/S006753/1 - 财政年份:2019
- 资助金额:
$ 59.74万 - 项目类别:
Research Grant
Legal dynamics through statutory interpretation of administrative law
通过行政法的法定解释实现法律动态
- 批准号:
18K18553 - 财政年份:2018
- 资助金额:
$ 59.74万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Research on the function of internal audit to support statutory audit in corporate governance
内部审计对公司治理法定审计的支持作用研究
- 批准号:
17K04035 - 财政年份:2017
- 资助金额:
$ 59.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Scrutiny of Statutory Instruments by the British House of Lords
英国上议院对法定文书的审查研究
- 批准号:
17K03333 - 财政年份:2017
- 资助金额:
$ 59.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Building Better Relationships? Interrogating the 'Black Box' of a Statutory Domestic Violence Perpetrator Programme
建立更好的关系?
- 批准号:
1881343 - 财政年份:2017
- 资助金额:
$ 59.74万 - 项目类别:
Studentship
Study on the restortion and conservation of historic environment of World Heritage Sites in Nepal and reorganization of statutory systems for heritage preservation
尼泊尔世界遗产历史环境恢复保护及遗产保护法定制度重组研究
- 批准号:
16H05753 - 财政年份:2016
- 资助金额:
$ 59.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Statutory Regulation and Emerging Traditional/Complementary Health Care Professions
法定监管和新兴传统/补充医疗保健职业
- 批准号:
356838 - 财政年份:2016
- 资助金额:
$ 59.74万 - 项目类别:
Operating Grants