Molecular principles of spindle orientation complex organization and function
纺锤体定向复杂组织与功能的分子原理
基本信息
- 批准号:2205405
- 负责人:
- 金额:$ 90.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-15 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Development of multicellular organisms is a complex process that rests fundamentally on the ability to generate many diverse cell types that ultimately result in adult tissues with unique functions. The creation of cell diversity is tasked to stem cells, whose divisions can produce distinct, non-identical daughter cells capable of assuming different fates. This so-called asymmetric cell division (ACD) process is essential to proper development and viability. Understanding the cellular and molecular mechanisms involved in ACD, therefore, has broad and significant biological importance, particularly considering the conservation of this process across all multicellular life. The goal of this project is to understand how conserved protein complexes that control specific aspects of asymmetric stem cell divisions are regulated to ensure proper development. Although many of the specific components that will be investigated are known, important knowledge gaps remain with respect to how they function at the molecular level. The project will focus particularly on how specific protein complexes assemble and ultimately achieve a cooperative function within the cell. Disruption of these events can lead to defects in tissue development that impact the viability and function of adult organisms. These studies will utilize the common fruit fly as a model genetic organism, whose genes important for ACD are highly conserved to humans. The Broader Impact activities include the intrinsic merit of the research as all multicellular life involves ACD. The work will also provide training for undergraduate and graduate students, with opportunities provided to underrepresented groups to inspire their involvement in a more diverse scientific community.Asymmetric cell division (ACD) is an evolutionarily conserved process that allows progenitor stem cells to produce non-identical daughter cells that ultimately diversify cell fates during development. Proper ACD requires coordinated function between cortical polarity and spindle positioning complexes, and defects that uncouple these disrupt tissue development and homeostasis. The goal of this project is to understand how the conserved Pins/Mud spindle orientation complex organizes at the cell cortex and functions despite competing interactions with cell polarity factors. We provide preliminary data demonstrating that the Pins/Mud complex phase separates into dense liquid droplets in vitro. This is facilitated through a newly-identified interaction between Mud and the actin-binding protein Hts, which we also show to be polarized in Drosophila neural stem cells in vivo. We hypothesize that Hts/Pins/Mud complexes form clustered biological condensates shielded from competing interactions to ensure spindle orientation precision in asymmetrically dividing stem cells. To test this hypothesis, we will use loss-of-function genetic approaches to first determine how Hts polarity is established in neural stem cells and how it impacts localization of core polarity and spindle orientation components. Next, we will use quantitative fluorescence imaging approaches to determine the physical properties of phase separated Pins/Mud droplets in the absence and presence of Hts. Finally, we will use genome editing and high-resolution microscopy to directly ascertain the role of phase separation in the assembly and function of Pins/Mud complexes in vivo. Results from this project will provide insights into the biophysical properties and cellular function of an evolutionarily conserved spindle positioning complex and resolve long-standing knowledge gaps in the molecular underpinnings of ACD.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多细胞生物体的发育是一个复杂的过程,基本上取决于产生许多不同细胞类型的能力,这些细胞类型最终导致具有独特功能的成体组织。细胞多样性的创造是干细胞的任务,干细胞的分裂可以产生不同的,不相同的子细胞,能够承担不同的命运。这种所谓的不对称细胞分裂(ACD)过程对正常发育和生存力至关重要。因此,了解ACD中涉及的细胞和分子机制具有广泛而重要的生物学意义,特别是考虑到在所有多细胞生命中保护这一过程。该项目的目标是了解如何控制不对称干细胞分裂的特定方面的保守蛋白质复合物进行调节,以确保正确的发展。虽然许多将被研究的特定成分是已知的,但关于它们在分子水平上如何发挥作用,仍然存在重要的知识空白。该项目将特别关注特定蛋白质复合物如何组装并最终在细胞内实现合作功能。这些事件的中断可能导致组织发育缺陷,影响成体生物体的生存力和功能。这些研究将利用普通果蝇作为模式遗传生物,其对ACD重要的基因对人类高度保守。更广泛的影响活动包括研究的内在价值,因为所有多细胞生命都涉及ACD。 这项工作还将为本科生和研究生提供培训,为代表性不足的群体提供机会,激励他们参与更多样化的科学界。不对称细胞分裂(ACD)是一个进化保守的过程,允许祖细胞产生不同的子细胞,最终在发育过程中使细胞命运多样化。正确的ACD需要皮质极性和纺锤体定位复合体之间的协调功能,而将这些分离的缺陷会破坏组织发育和体内平衡。该项目的目标是了解保守的Pins/Mud纺锤体取向复合物如何在细胞皮层组织和功能,尽管与细胞极性因子竞争相互作用。我们提供的初步数据表明,针/泥复合物相分离成致密的液滴在体外。这是促进通过一个新发现的相互作用之间的泥和肌动蛋白结合蛋白HTS,我们也表明,在体内果蝇神经干细胞极化。我们假设Hts/Pins/Mud复合物形成群集的生物冷凝物,其被屏蔽免受竞争性相互作用,以确保不对称分裂干细胞中的纺锤体取向精度。为了验证这一假设,我们将使用功能丧失遗传方法首先确定Hts极性如何在神经干细胞中建立,以及它如何影响核心极性和纺锤体取向组件的定位。接下来,我们将使用定量荧光成像方法来确定在Hts存在和不存在的情况下相分离的Pins/Mud液滴的物理性质。最后,我们将使用基因组编辑和高分辨率显微镜直接确定相分离在体内Pins/Mud复合物组装和功能中的作用。该项目的结果将提供深入了解进化保守的纺锤体定位复合物的生物物理特性和细胞功能,并解决ACD分子基础方面长期存在的知识空白。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Johnston其他文献
Solvent‐Assisted Mechanochemical Synthesis of a Nucleotide Dimer
溶剂辅助机械化学合成核苷酸二聚体
- DOI:
10.1002/cpz1.418 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Christopher Johnston;M. Migaud - 通讯作者:
M. Migaud
Randomized Controlled Trial of High Concentration versus Titrated Oxygen Therapy in Severe Exacerbations of Asthma: Perrin K, Wijesinghe M, Healy B, et al. Thorax 2011;66:937–41.
- DOI:
10.1016/j.jemermed.2012.01.003 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:
- 作者:
Christopher Johnston - 通讯作者:
Christopher Johnston
Health Care System Delay and Heart Failure in Patients with ST-segment Elevation Myocardial Infarction Treated with Primary Percutaneous Coronary Intervention: Follow-up of Population-based Medical Registry Data: Terkelsen CJ, Jensen LO, Tilsted H, et al. Ann Intern Med 2011;155:361–7.
- DOI:
10.1016/j.jemermed.2012.01.006 - 发表时间:
2012-03-01 - 期刊:
- 影响因子:
- 作者:
Christopher Johnston - 通讯作者:
Christopher Johnston
Pericardial effusion in myxedema
- DOI:
10.1016/s0002-8703(43)90489-2 - 发表时间:
1943-04-01 - 期刊:
- 影响因子:
- 作者:
George T. Harrell;N.C. Winston-Salem;Christopher Johnston - 通讯作者:
Christopher Johnston
Pulsed Ultrasounds Accelerate Healing of Rib Fractures in an Experimental Animal Model: An Effective New Thoracic Therapy?: Santana-Rodriguez N, Clavo B, Fernandez-Perez L, et al. J Thorac Cardiovasc Surg 2011;141:1253–8.
- DOI:
10.1016/j.jemermed.2011.07.006 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
Christopher Johnston - 通讯作者:
Christopher Johnston
Christopher Johnston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于First Principles的光催化降解PPCPs同步脱氮体系构建及其电子分配机制研究
- 批准号:51778175
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Continuing Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Standard Grant
CAREER: The Contagion Science: Integration of inhaled transport mechanics principles inside the human upper respiratory tract at multi scales
职业:传染病科学:在多尺度上整合人类上呼吸道内的吸入运输力学原理
- 批准号:
2339001 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Continuing Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
- 批准号:
EP/Y036433/1 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Research Grant
CAREER: Foundational Principles for Harnessing Provenance Analytics for Advanced Enterprise Security
职业:利用来源分析实现高级企业安全的基本原则
- 批准号:
2339483 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Continuing Grant
Travel: NSF Student Travel Grant for 2024 ACM SIGSIM Principles of Advanced Discrete Simulation (PADS)
旅行:2024 年 ACM SIGSIM 高级离散仿真原理 (PADS) 的 NSF 学生旅行补助金
- 批准号:
2416160 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Standard Grant
Shaping Competition in the Digital Age (SCiDA) - Principles, tools and institutions of digital regulation in the UK, Germany and the EU
塑造数字时代的竞争 (SCiDA) - 英国、德国和欧盟的数字监管原则、工具和机构
- 批准号:
AH/Y007549/1 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
- 批准号:
2339995 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Continuing Grant
CAREER: Evolutionary Principles of Intrinsically Disordered Proteins
职业:本质无序蛋白质的进化原理
- 批准号:
2338129 - 财政年份:2024
- 资助金额:
$ 90.95万 - 项目类别:
Continuing Grant