The Diffuse Interface Method and Applications to Coupled Systems in Fluid Dynamics
扩散界面方法及其在流体动力学耦合系统中的应用
基本信息
- 批准号:2205695
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Systems involving moving domains in which a fluid interacts with a neighboring region are often modeled using partial differential equations with coupling conditions that hold across a common interface. Such systems occur in medicine (liver perfusion, lymphatic circulation, the closing and opening of heart valves), geomechanics (fracture propagation, coupling between the surface and groundwater flows), and other applications. Numerical simulations of such systems are based on discrete approximations to the governing equations. To accurately describe the dynamics, interface tracking methods, in which the nodes of the computational mesh are aligned with the parametric representation of the interface, are often used. However, interface-tracking methods rapidly become difficult to apply when domain deformations are large. To prevent numerical failures, computationally expensive mesh regenerations or similar techniques are necessary when mesh elements become highly skewed. The diffuse interface method is an alternative strategy based on a fixed mesh approach. For this method, the model is reformulated using a phase-field function that smoothly transitions from zero in one region to one in the other region. The computational mesh nodes do not have to be aligned with the interface, whose location is now captured using the phase-field function. This approach is useful even when the domain does not change in time, or in cases where the interface between the two regions is difficult to determine exactly, or when the geometry of the interface is complex. However, the diffuse interface method introduces an additional error at the interface, which needs to be carefully controlled. This project aims to establish mathematical foundations for application of the diffuse interface method in fluid dynamics. The techniques developed in this work are expected to be applicable to other coupled systems involving fluids and poroelastic and/or elastic structures as well. The project includes training of graduate students through involvement in the research.This project focuses on the development of mathematical theory and numerical methods for the diffuse interface method applied to coupled systems in fluid dynamics. This will be achieved by studying a hierarchy of coupled flow models, including the fluid-porous medium interaction, fluid-poroelastic structure interaction, and fluid-elastic structure interaction. For each model, the work entails proving the well-posedness of the underlying diffuse interface problem, showing the convergence of the diffuse interface model to the corresponding sharp interface model as the width of the interfacial layer goes to zero, and calculating the rate of convergence including the modeling error and the approximation error of the discrete solution based on the finite element method. The analysis will be performed using weighted Sobolev spaces. Numerical methods will be developed and implemented for each model.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
涉及运动域的系统,其中流体与相邻区域相互作用,通常使用偏微分方程建模,其中耦合条件在公共界面上成立。这种系统出现在医学(肝脏灌注,淋巴循环,心脏瓣膜的关闭和打开),地质力学(裂缝传播,地表和地下水流之间的耦合)和其他应用中。这种系统的数值模拟是基于离散近似的控制方程。为了准确地描述动力学,界面跟踪方法,其中计算网格的节点与界面的参数表示对齐,经常使用。然而,界面跟踪方法迅速变得难以应用时域变形很大。为了防止数值故障,计算昂贵的网格再生或类似的技术是必要的,当网格元素变得高度歪斜。漫射界面方法是基于固定网格方法的替代策略。对于这种方法,使用相场函数重新制定模型,该相场函数从一个区域中的零平滑地过渡到另一个区域中的一个。计算网格节点不必与界面对齐,其位置现在使用相场函数捕获。这种方法是有用的,即使当域不随时间变化,或在两个区域之间的界面很难准确确定的情况下,或当界面的几何形状是复杂的。然而,扩散界面方法在界面处引入了额外的误差,这需要仔细控制。本计画旨在为扩散界面法在流体力学中的应用建立数学基础。在这项工作中开发的技术预计将适用于其他耦合系统,涉及流体和多孔弹性和/或弹性结构以及。该项目包括通过参与研究对研究生进行培训。该项目的重点是发展适用于流体动力学耦合系统的扩散界面方法的数学理论和数值方法。这将通过研究一系列耦合流动模型来实现,包括流体-多孔介质相互作用、流体-多孔弹性结构相互作用和流体-弹性结构相互作用。对于每个模型,工作需要证明的适定性的基本扩散界面问题,显示的扩散界面模型收敛到相应的尖锐的界面模型的界面层的宽度为零,并计算收敛速度,包括建模误差和基于有限元方法的离散解的近似误差。将使用加权Sobolev空间进行分析。该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analyzing the Effects of Multi-Layered Porous Intraluminal Thrombus on Oxygen Flow in Abdominal Aortic Aneurysms
多层多孔腔内血栓对腹主动脉瘤血氧流量的影响分析
- DOI:10.3390/oxygen2040034
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Throop, Alexis;Badr, Durwash;Durka, Michael;Bukač, Martina;Zakerzadeh, Rana
- 通讯作者:Zakerzadeh, Rana
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martina Bukac其他文献
Martina Bukac的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martina Bukac', 18)}}的其他基金
Collaborative Research: Time Accurate Fluid-Structure Interactions
合作研究:时间精确的流固耦合
- 批准号:
2208219 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Numerical Methods for Fluid-Structure Interaction Problems with Large Displacements
大位移流固耦合问题的数值方法
- 批准号:
1912908 - 财政年份:2019
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Development and analysis of high-order partitioned schemes for fluid-structure interaction problems
流固耦合问题高阶划分方案的开发和分析
- 批准号:
1619993 - 财政年份:2016
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
相似海外基金
Friction mechanisms of resins and nanomaterial dispering resins by the SEM friction interface observation method
SEM摩擦界面观察法研究树脂与纳米材料分散树脂的摩擦机理
- 批准号:
23H01330 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A sharp-interface multi-physics particle method to elucidate porosity formation and elimination mechanisms in metal additive manufacturing
一种锐界面多物理粒子方法,用于阐明金属增材制造中孔隙的形成和消除机制
- 批准号:
23K16892 - 财政年份:2023
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Establishment of quasiparticle control method by introducing double hetero interface
引入双异质界面的准粒子控制方法的建立
- 批准号:
22H01557 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Control of interface shape during the growth of transparent crystals by infrared convergent heating floating zone method and of the defects of the grown crystals
红外聚光加热浮区法生长透明晶体过程中界面形状及生长晶体缺陷的控制
- 批准号:
22K04696 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a Method for Creating and Validating the Safety of Interface Design
开发一种创建和验证界面设计安全性的方法
- 批准号:
RGPIN-2020-06950 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Discovery Grants Program - Individual
Elucidation of electropolishing mechanism at solid/solid interface by ultra-high concentration CNT composite solid electrolyte and development of mirror finishing method
超高浓度CNT复合固体电解质固/固界面电解抛光机理的阐明及镜面加工方法的开发
- 批准号:
22H01834 - 财政年份:2022
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhanced power conversion efficiency of perovskite solar cells with densification of crystal layer interface using vapor deposition method
利用气相沉积法致密化晶层界面提高钙钛矿太阳能电池的能量转换效率
- 批准号:
21K04970 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing a Method for Creating and Validating the Safety of Interface Design
开发一种创建和验证界面设计安全性的方法
- 批准号:
RGPIN-2020-06950 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Discovery Grants Program - Individual
Robust Active Acoustic Sensing Method and Its Application to Garment Interface
鲁棒主动声学传感方法及其在服装界面中的应用
- 批准号:
21J10706 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of high-sensitivity labor-saving observation method to detect fluctuations in the freshwater-saltwater interface deeper than the bottom of the observation hole
开发出高灵敏度、省力的观测方法,可检测比观测孔底部更深的淡水-咸水界面的波动
- 批准号:
21K05839 - 财政年份:2021
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)