Bifurcation, Stability, and Non-uniqueness in Ideal Fluids

理想流体中的分岔、稳定性和非唯一性

基本信息

  • 批准号:
    2205910
  • 负责人:
  • 金额:
    $ 25.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This project seeks to promote and advance the mathematical theory of free-surface water waves and compressible fluids, which host a wide range of interesting physical phenomena and whose dynamics is governed by the Euler equations. The main goals are to develop new or extend existing analytic techniques to establish existence and stability theory for steady water waves, and to investigate uniqueness properties for weak solutions to one-dimensional system of compressible gases. Progress in this project will enhance our understanding of the mathematics of ideal fluids and develop novel mathematical tools that can provide insight into truly nonlinear phenomena in partial differential equations. This research will also involve training and collaboration with graduate students and postdoctoral researchers.This project will bring new perspectives and develop novel approaches to make progress on some fundamental problems in the study of ideal fluids. Specifically, the PI will use a novel global bifurcation theoretic machinery to construct large-amplitude solitary water waves in presence of localized disturbances coming from either submerged objects or the bottom topography. The second topic of this project concerns stability of solitary water waves. The PI will study the spectral stability of multimodal gravity-capillary internal solitary waves and prove nonlinear transverse instability of gravity-capillary internal solitary waves. The final track of the project consists of the study of the non-uniqueness of entropy solutions to the compressible isentropic Euler system. The main ingredients and techniques involved in the study include bifurcation method, complex analysis, stability analysis, convex integration machinery, and the theory of hyperbolic conservation laws.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在促进和推进自由表面水波和可压缩流体的数学理论,这些理论包含各种有趣的物理现象,其动力学由欧拉方程控制。主要目标是发展新的或扩展现有的分析方法,建立定常水波的存在性和稳定性理论,并研究一维可压缩气体方程组弱解的唯一性。该项目的进展将提高我们对理想流体数学的理解,并开发新的数学工具,可以深入了解偏微分方程中真正的非线性现象。该研究还将涉及对研究生和博士后研究人员的培训和合作。该项目将带来新的视角,并开发新的方法,以在理想流体研究中的一些基本问题上取得进展。具体而言,PI将使用一种新的全球分叉理论机器来构建大振幅孤立波的存在下,本地化的干扰来自无论是淹没的对象或底部地形。该项目的第二个主题涉及孤立水波的稳定性。PI将研究多模态重力-毛细管内孤立波的谱稳定性,并证明重力-毛细管内孤立波的非线性横向不稳定性。该项目的最后轨道包括可压缩等熵欧拉系统的熵解的非唯一性的研究。该研究涉及的主要成分和技术包括分叉方法、复分析、稳定性分析、凸积分机制和双曲守恒律理论。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability of Peaked Solitary Waves for a Class of Cubic Quasilinear Shallow-Water Equations
一类三次拟线性浅水方程的峰值孤立波稳定性
Rigidity of Three-Dimensional Internal Waves with Constant Vorticity
恒涡度三维内波的刚度
  • DOI:
    10.1007/s00021-023-00816-5
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Chen, Robin Ming;Fan, Lili;Walsh, Samuel;Wheeler, Miles H.
  • 通讯作者:
    Wheeler, Miles H.
A Kato-Type Criterion for Vanishing Viscosity Near Onsager’s Critical Regularity
接近 Onsager 临界正则性的加藤型粘度消失准则
Stabilization effect of elasticity on three-dimensional compressible vortex sheets
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ming Chen其他文献

Changes of monocyte chemoattractant protein-1 content in adenomyotic tissue and its significance: Changes of monocyte chemoattractant protein-1 content in adenomyotic tissue and its significance
子宫腺肌组织中单核细胞趋化蛋白-1含量的变化及其意义: 子宫腺肌组织中单核细胞趋化蛋白-1含量的变化及其意义
Real-Time Demonstration of 1024-QAM OFDM Transmitter in Short-Reach IMDD Systems
短距离 IMDD 系统中 1024-QAM OFDM 发射机的实时演示
  • DOI:
    10.1109/lpt.2015.2392797
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Ming Chen;Jing He;Lin Chen
  • 通讯作者:
    Lin Chen
Low-voltage, high transmittance fringe-field switching mode liquid crystal for monitor display
用于监视器显示的低电压、高透过率边缘场开关模式液晶
  • DOI:
    10.1080/02678292.2014.889234
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongming Zhan;Zheng Xu;Yupeng Wang;Yongcan Wang;Ming Chen;Woong Kim;Dan Wang;Xibin Shao;Seongkyu Lee;Suling Zhao
  • 通讯作者:
    Suling Zhao
Research on a temperature controlled terahertz birefringence photonic crystal fiber
温控太赫兹双折射光子晶体光纤的研究
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhigang Zhang;Jian Tang;Jiankun Zhang;Ming Chen;Juan Nie;Hui Chen
  • 通讯作者:
    Hui Chen
A Novel Firewalls ConFigure Fault and Its Repair Method
一种新型防火墙配置故障及其修复方法

Ming Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ming Chen', 18)}}的其他基金

Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
  • 批准号:
    2246687
  • 财政年份:
    2023
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Standard Grant
CAREER: Enantioselective Syntheses of Organoboron Compounds via Transition-Metal Catalysis
职业:通过过渡金属催化对映选择性合成有机硼化合物
  • 批准号:
    2042353
  • 财政年份:
    2021
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Continuing Grant
Mathematical Analysis of Water Waves and Other Fluid Models
水波和其他流体模型的数学分析
  • 批准号:
    1907584
  • 财政年份:
    2019
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Standard Grant
Conference on Nonlinear Waves: Analysis and Applications
非线性波会议:分析与应用
  • 批准号:
    1651097
  • 财政年份:
    2017
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Standard Grant
Steady stratified water waves and asymptotic models
稳态分层水波和渐近模型
  • 批准号:
    1613375
  • 财政年份:
    2016
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Standard Grant

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
  • 批准号:
    10660507
  • 财政年份:
    2023
  • 资助金额:
    $ 25.33万
  • 项目类别:
Virtual Stability verification of Remanufactured and Electrified non-road mobile Machinery (VS-REM)
再制造和电气化非道路移动机械虚拟稳定性验证(VS-REM)
  • 批准号:
    10074544
  • 财政年份:
    2023
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Grant for R&D
The effects of vibration on the stability of medical products transported by non-conventional and autonomous modes.
振动对非常规和自主模式运输的医疗产品稳定性的影响。
  • 批准号:
    2906020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Studentship
Non-linear stability of inverter-dominated power grids
逆变器主导电网的非线性稳定性
  • 批准号:
    2767353
  • 财政年份:
    2022
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Studentship
Non-destructive strength and stability analyses of rock slopes
岩质边坡的无损强度与稳定性分析
  • 批准号:
    574190-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.33万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of non-ATP competitive chemical biology probes to elucidate mechanisms of PLK1 activation and stability.
开发非 ATP 竞争性化学生物学探针以阐明 PLK1 激活和稳定性的机制。
  • 批准号:
    10290769
  • 财政年份:
    2021
  • 资助金额:
    $ 25.33万
  • 项目类别:
Establishment of a Nobel Non-invasive Method of Measurement of Implant Stability Utilizing Magnetic Attachments
建立利用磁性附件测量种植体稳定性的 Nobel 非侵入性方法
  • 批准号:
    21K10029
  • 财政年份:
    2021
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of non-ATP competitive chemical biology probes to elucidate mechanisms of PLK1 activation and stability.
开发非 ATP 竞争性化学生物学探针以阐明 PLK1 激活和稳定性的机制。
  • 批准号:
    10437922
  • 财政年份:
    2021
  • 资助金额:
    $ 25.33万
  • 项目类别:
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
  • 批准号:
    1956092
  • 财政年份:
    2020
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Standard Grant
Stability of Organic Solar Cells based on Non-Fullerene Acceptors
基于非富勒烯受体的有机太阳能电池的稳定性
  • 批准号:
    EP/S020748/1
  • 财政年份:
    2019
  • 资助金额:
    $ 25.33万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了