Biomechanical characterization of striated muscle cells from R155C VCP knock-in and W2710X filamin C knock-in mice: a novel approach to understand the pathogenesis of myofibrillar myopathies
R155C VCP 敲入和 W2710X filamin C 敲入小鼠横纹肌细胞的生物力学特征:了解肌原纤维肌病发病机制的新方法
基本信息
- 批准号:251281920
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Myofibrillar myopathies (MFMs) are a group of sporadic and hereditary skeletal and cardiac muscle diseases that lead to severe physical disability and premature death. MFMs are caused by mutations in genes encoding desmin, filamin C, plectin, VCP, FHL1, ZASP, myotilin, alpha-B-crystallin, and BAG3. First results from our biomechanical studies on primary human myoblasts carrying desmin -and plectin mutations showed an increased stiffness and reduced mechanical stress tolerance in the form of higher mechanical vulnerability compared to control cells. We hypothesize that the higher stiffness of mutant cells leads to higher intracellular stress at physiologic stretch and shear deformations, which in turn triggers muscle fiber degeneration. In the present project, we will test this hypothesis using immortalized myoblast cells obtained from two MFM mouse models. Through the DFG research consortium FOR1228, we have access to two knock-in mouse models (R155C VCP, and W2710X filamin C), which harbor the most frequent human pathogenic VCP and filamin C mutations. Using traction force microscopy, magnetic tweezer microrheology, and a cell stretcher together with high resolution (temporal and spatial) confocal microscopy, we will address two key questions: (i) what is the influence of these mutations on the biomechanical function of cultured myoblasts and myotubes derived from skeletal muscle tissue, and (ii) what are the molecular processes that lead to altered mechanical stress tolerance in these cells. This project will provide the first insight into the biomechanical aspects of the pathogenesis of VCP- and filamin C-related myopathies.
肌原纤维性肌病(MFM)是一组散发性和遗传性骨骼肌和心肌疾病,可导致严重的身体残疾和过早死亡。MFM是由编码结蛋白、细丝蛋白C、网蛋白、VCP、FHL 1、ZASP、肌球蛋白、α-B-晶状体蛋白和BAG 3的基因突变引起的。我们对携带结蛋白和网蛋白突变的原代人成肌细胞的生物力学研究的第一个结果显示,与对照细胞相比,刚度增加,机械应力耐受性降低,机械脆弱性更高。我们假设突变细胞的更高刚度导致在生理拉伸和剪切变形时更高的细胞内应力,这反过来又引发肌纤维变性。在本项目中,我们将使用从两个MFM小鼠模型中获得的永生化成肌细胞来验证这一假设。通过DFG研究联盟FOR 1228,我们获得了两种敲入小鼠模型(R155 C VCP和W2710 X细丝蛋白C),它们具有最常见的人类致病性VCP和细丝蛋白C突变。使用牵引力显微镜,磁镊子微观流变学,和细胞担架连同高分辨率(时间和空间)共聚焦显微镜,我们将解决两个关键问题:(i)这些突变对培养的成肌细胞和肌管的生物力学功能的影响来自骨骼肌组织,和(ii)是什么样的分子过程,导致改变这些细胞的机械应力耐受性。该项目将提供第一次深入了解VCP和细丝蛋白C相关肌病发病机制的生物力学方面。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ben Fabry其他文献
Professor Dr. Ben Fabry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ben Fabry', 18)}}的其他基金
A novel multistage strategy for non-toxic anti-biofouling coatings by combining antifouling photocatalytic doped TiO2 nanostructured films with fouling release slippery liquid-infused porous surfaces (SLIPS) approaches.
通过将防污光催化掺杂 TiO2 纳米结构薄膜与污垢释放滑液注入多孔表面 (SLIPS) 方法相结合,实现无毒防生物污损涂层的新型多级策略。
- 批准号:
442826449 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Adding Dimension:Mechanotransduction in mammalian endothelial Cells and Cardiomyocytes exposed to passive Stretchusing a novel multidirectional isotropic Cell-Stretch Technology
添加维度:使用新型多向各向同性细胞拉伸技术对暴露于被动拉伸的哺乳动物内皮细胞和心肌细胞进行机械转导
- 批准号:
383071714 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Biophysical Benchmarks of Malignancy in Primary Breast Tumor Cells
原发性乳腺肿瘤细胞恶性肿瘤的生物物理基准
- 批准号:
310946797 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Mechanisms of p130Cas-mediated mechano-sensing in cells
p130Cas介导的细胞机械传感机制
- 批准号:
232394966 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grants
Biochmechanics of MFM: a multi-scale approach
MFM 的生物力学:多尺度方法
- 批准号:
228081227 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Units
Biodegredable Mg and Mg alloys: Tailoring the degradation rate and biocompatibility by surface modifications
可生物降解的镁和镁合金:通过表面改性定制降解速率和生物相容性
- 批准号:
185367898 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Coordinated movements in a penguin huddle
企鹅群中的协调动作
- 批准号:
198738446 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Infrastructure Priority Programmes
Contractile forces during cancer cell migration in a 3-D connective tissue matrix
癌细胞在 3D 结缔组织基质中迁移过程中的收缩力
- 批准号:
59573453 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grants
Regulation of contractile forces in self-assembling microtissues
自组装微组织收缩力的调节
- 批准号:
529897225 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Functional characterization of striated fiber assemblins in malaria parasites
疟疾寄生虫中横纹纤维组装体的功能特征
- 批准号:
10675782 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Isolation, Characterization and Reconstruction of Vertebrate Striated Muscle Myosin Filaments
脊椎动物横纹肌肌球蛋白丝的分离、表征和重建
- 批准号:
10043292 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Isolation, Characterization and Reconstruction of Vertebrate Striated Muscle Myosin Filaments
脊椎动物横纹肌肌球蛋白丝的分离、表征和重建
- 批准号:
10268975 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Characterization of the FHL protein family in striated muscle
横纹肌中 FHL 蛋白家族的表征
- 批准号:
nhmrc : 284272 - 财政年份:2004
- 资助金额:
-- - 项目类别:
NHMRC Project Grants














{{item.name}}会员




