From Differential Inclusions to Variational Problems: Theory and Applications
从微分包含到变分问题:理论与应用
基本信息
- 批准号:2206291
- 负责人:
- 金额:$ 19.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Singularities are ubiquitous in nature. Examples include turbulence in fluid dynamics, folds in thin films, and defects in liquid crystals. The physical behavior around singularities is generally highly complex, posing great challenges to the efforts of understanding their formation, structure, and influence on neighboring regions. The knowledge of the nature of singularities is fundamental to predict a system’s behavior or to develop effective applications for a material. This project considers systems in continuum mechanics and materials science that can be described directly or indirectly by a class of partial differential equations (PDE). The main goals include developing novel mathematical methods for analyzing this class of PDE and applying such new methods to better understand the nature of their singularities. This project will offer research and training opportunities to graduate and undergraduate students. Many nonlinear PDE modeling physical systems and materials can be formulated as differential inclusions. The nature of singularities in these problems is closely related to the rigidity and flexibility properties of the relevant differential inclusions. This project contains two main themes. The first theme aims to extend the general theory for rigidity and flexibility of differential inclusions, and to develop new analytical tools to study the rigidity and flexibility of scalar and systems of conservation laws viewed as differential inclusions. Specifically, the Eikonal equation and a two-by-two system of conservation laws for isentropic elasticity will be investigated as model problems. The investigator will combine methods from differential inclusions and hyperbolic conservation laws to advance the understanding of the structure of entropy solutions for systems and generalized entropy solutions for scalar equations. The second theme seeks to develop novel perspectives and analytical methods incorporating entropies, to study second order scalar and multi-valued problems in the calculus of variations, which are closely related to the Eikonal equation. Such problems arise in various physical settings, including thin films and layered elastic materials, liquid crystals, and self-organized convection patterns. The investigator plans to meld tools from variational analysis and those developed in the first part of this project to characterize the low-energy states. This analysis will inform the complex singularity structures in different physical settings of broad practical interest.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
奇点在自然界中无处不在。例子包括流体动力学中的湍流、薄膜中的折叠和液晶中的缺陷。奇点周围的物理行为通常是高度复杂的,对理解它们的形成,结构和对邻近区域的影响的努力构成了巨大的挑战。奇异性的性质的知识是基本的预测系统的行为或开发有效的应用程序的材料。该项目考虑了连续介质力学和材料科学中可以直接或间接由一类偏微分方程(PDE)描述的系统。主要目标包括开发新的数学方法来分析这类偏微分方程,并应用这些新方法来更好地理解其奇点的性质。该项目将为研究生和本科生提供研究和培训机会。 许多非线性偏微分方程模型的物理系统和材料可以表示为微分包含。这些问题中奇异性的性质与相关微分包含的刚性和柔性性质密切相关。该项目包含两个主题。第一个主题旨在扩展微分包含的刚性和柔性的一般理论,并开发新的分析工具来研究作为微分包含的标量和守恒律系统的刚性和柔性。具体地说,Eikonal方程和二乘二系统的守恒定律等熵弹性将作为模型问题进行研究。调查员将联合收割机方法从微分包含和双曲守恒律推进系统和广义熵解标量方程的熵解的结构的理解。第二个主题旨在发展新的视角和分析方法,结合熵,研究变分法中的二阶标量和多值问题,这是密切相关的Eikonal方程。这些问题出现在各种物理环境中,包括薄膜和层状弹性材料,液晶和自组织对流模式。研究人员计划将变分分析中的工具与本项目第一部分开发的工具相结合,以表征低能态。这项分析将为不同物理环境中的复杂奇点结构提供广泛的实际利益。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On optimal regularity estimates for finite-entropy solutions of scalar conservation laws
标量守恒定律有限熵解的最优正则估计
- DOI:10.5802/crmath.427
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lamy, Xavier;Lorent, Andrew;Peng, Guanying
- 通讯作者:Peng, Guanying
Quantitative Rigidity of Differential Inclusions in Two Dimensions
二维微分夹杂物的定量刚性
- DOI:10.1093/imrn/rnad108
- 发表时间:2023
- 期刊:
- 影响因子:1
- 作者:Lamy, Xavier;Lorent, Andrew;Peng, Guanying
- 通讯作者:Peng, Guanying
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guanying Peng其他文献
A new ligand for hydrophobic charge induction chromatography
- DOI:
10.1016/j.jbiotec.2008.07.054 - 发表时间:
2008-10-01 - 期刊:
- 影响因子:
- 作者:
Guofeng Zhao;Fuqiang Li;Guanying Peng;Qinghong Shi;Yan Sun - 通讯作者:
Yan Sun
Guanying Peng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
In situ quantitative monitoring of water environment chemistry and corrosion evolution of steel matrix around typical composite inclusions under different strains
不同应变下典型复合夹杂物周围钢基体水环境化学和腐蚀演化的原位定量监测
- 批准号:
24K17166 - 财政年份:2024
- 资助金额:
$ 19.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
- 批准号:
2235856 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Study on zircon-hosted melt inclusions from granitoids: new approach to assess chemical evolution of magma and its application to granitoid petrogenesis.
花岗岩中锆石熔体包裹体的研究:评估岩浆化学演化的新方法及其在花岗岩岩石成因中的应用。
- 批准号:
22KJ2361 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Constraining nitrogen sources and recycling efficiency in hot subduction zones using fluid inclusions in mineral separates from mafic lavas
利用镁铁质熔岩矿物分离物中的流体包裹体限制热俯冲带的氮源和回收效率
- 批准号:
2324745 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
- 批准号:
2235857 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
Inverse Design and Mechanics of Hybrid Filler Composites with Solid and Liquid Inclusions
固体和液体夹杂物混合填料复合材料的逆向设计和力学
- 批准号:
2306613 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Standard Grant
The role and significance of vesicular structures in the formation of alpha-synuclein inclusions in multiple system atrophy.
囊泡结构在多系统萎缩中α-突触核蛋白包涵体形成中的作用和意义。
- 批准号:
23K06802 - 财政年份:2023
- 资助金额:
$ 19.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechano-Instructive Material Inclusions to Direct Meniscus Repair
用于直接半月板修复的力学指导材料夹杂物
- 批准号:
10534807 - 财政年份:2022
- 资助金额:
$ 19.8万 - 项目类别:
Secondary steelmaking process stream optimization - inclusions, clogging, and segregation
二次炼钢工艺流程优化 - 夹杂物、堵塞和偏析
- 批准号:
534082-2018 - 财政年份:2022
- 资助金额:
$ 19.8万 - 项目类别:
Collaborative Research and Development Grants