Nonlinear Dynamics with Applications to Physical Systems

非线性动力学及其在物理系统中的应用

基本信息

  • 批准号:
    2206500
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

The proposed research aims at discovering new phenomena of fundamental mathematical interest as well as physical relevance, and at explaining them in the simplest possible way. The three main proposed projects are (i) study of the robustness or fragility of resonances arising in many physical applications, e.g. in solid state physics, (ii) explaining the geometrical mechanism of the recently discovered ponderomotive magnetism (observed in many physical experiments) and developing a connection between averaging theory and differential geometry – two seemingly unrelated fields, and (iii) exploiting the recently discovered connection between Hill's equation on the one hand and the tire track problem on the other, thus unifying two seemingly unrelated areas. Some results of this project are likely to give a new and simpler understanding of some phenomena of fundamental interest, and may make their way into textbooks. The project consists of three parts, unified by the desire to discover and understand new phenomena in dynamics. Some years ago J. B. Keller and V. Arnold discovered and analyzed a fundamental feature of resonances in two different classes of problems: circle maps and Mathieu-type equations. The goal of the first part of the project is to add a yet one more class to the two studied by Arnold and Keller, namely the area-preserving cylinder maps. Besides of its basic interest, the latter example comes up in solid-state physics among many other settings. The second part of the project aims at understanding the somewhat mysterious mechanism of ponderomotive magnetism, and also aims to explore a connection between two fundamental objects, one from mechanics (the gyroscopic effect) and the other from differential geometry (Jacobi fields). The third project proposes to exploit the recently found connection between two seemingly unrelated objects: (i) Hill's equation, studied extensively over a couple of centuries, and (ii) tire tracks, a more recently studied object. It is hoped that the results from one area will give new insights into the other.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拟议的研究旨在发现新的现象的基本数学利益以及物理相关性,并在解释他们在最简单的方式。三个主要的建议项目是(i)研究在许多物理应用中,例如在固态物理中产生的共振的鲁棒性或脆弱性,(ii)解释最近发现的有质动力磁性的几何机制(在许多物理实验中观察到)并发展了平均理论和微分几何之间的联系-两个看似无关的领域,和(iii)利用最近发现的希尔方程之间的联系,一方面和轮胎的轨道问题,从而统一两个看似无关的领域。 这个项目的一些结果可能会给一些基本利益的现象一个新的和更简单的理解,并可能使他们的方式进入教科书。该项目由三个部分组成,统一的愿望,发现和理解新的动力学现象。几年前,J. B。Keller和V. Arnold发现并分析了两类不同问题中共振的基本特征:圆映射和Mathieu型方程。该项目的第一部分的目标是增加一个又一类的阿诺德和凯勒研究的两个,即面积保持圆柱映射。除了它的基本兴趣之外,后一个例子出现在固态物理学和许多其他环境中。 该项目的第二部分旨在了解有质动力磁性的神秘机制,并旨在探索两个基本对象之间的联系,一个来自力学(陀螺效应),另一个来自微分几何(雅可比场)。第三个项目建议利用最近发现的两个看似无关的物体之间的联系:(一)希尔方程,几个世纪以来被广泛研究,(二)轮胎痕迹,最近研究的对象。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arnold Tongues in Area-Preserving Maps
区域保护地图中的阿诺德舌头
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Levi其他文献

Nonchaotic behavior in the Josephson junction.

Mark Levi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Levi', 18)}}的其他基金

Nonlinear Dynamics with Applications to Physical Systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    1909200
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Nonlinear dynamics with applications to physical systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    1412542
  • 财政年份:
    2014
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Nonlinear Dynamics with Applications to Physical Systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    1009130
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics with Applications to Physical Systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    0605878
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Nonlinear Dynamics with Applications to Physical Systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    0205128
  • 财政年份:
    2002
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
U.S.-Mexico Collaborative Research: Dynamics of Extended Systems and Coupled Map Lattices
美国-墨西哥合作研究:扩展系统动力学和耦合地图格子
  • 批准号:
    0104675
  • 财政年份:
    2001
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics with Applications in Physical Systems
非线性动力学在物理系统中的应用
  • 批准号:
    0096172
  • 财政年份:
    1999
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics with Applications in Physical Systems
非线性动力学在物理系统中的应用
  • 批准号:
    9704554
  • 财政年份:
    1997
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Dynamics and its Application in Physical Systems
数学科学:非线性动力学及其在物理系统中的应用
  • 批准号:
    9406022
  • 财政年份:
    1994
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Qualitative Analysis of Nonlinear Dynamical Systems
数学科学:非线性动力系统的定性分析
  • 批准号:
    9113139
  • 财政年份:
    1991
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
  • 批准号:
    n/a
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Nonlinear dynamics of shell and plate structures, multi-dimensional and multi-field applications
壳板结构非线性动力学、多维多领域应用
  • 批准号:
    RGPIN-2018-06609
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2022-05067
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Parameterization and Reduction for Nonlinear Stochastic Systems with Applications to Fluid Dynamics
非线性随机系统的参数化和简化及其在流体动力学中的应用
  • 批准号:
    2108856
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear dynamics of shell and plate structures, multi-dimensional and multi-field applications
壳板结构非线性动力学、多维多领域应用
  • 批准号:
    RGPIN-2018-06609
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of Nonlinear Dynamics
非线性动力学的应用
  • 批准号:
    552400-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    University Undergraduate Student Research Awards
Formulation and Analysis of Nonlinear Mathematical Models with Applications to Population Dynamics
非线性数学模型的制定和分析及其在人口动态中的应用
  • 批准号:
    RGPIN-2016-05769
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear dynamics of shell and plate structures, multi-dimensional and multi-field applications
壳板结构非线性动力学、多维多领域应用
  • 批准号:
    RGPIN-2018-06609
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear dynamics of shell and plate structures, multi-dimensional and multi-field applications
壳板结构非线性动力学、多维多领域应用
  • 批准号:
    RGPIN-2018-06609
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Dynamics with Applications to Physical Systems
非线性动力学及其在物理系统中的应用
  • 批准号:
    1909200
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了