Parameterization and Reduction for Nonlinear Stochastic Systems with Applications to Fluid Dynamics

非线性随机系统的参数化和简化及其在流体动力学中的应用

基本信息

项目摘要

The dynamics of the oceans exhibits several large-scale persistent currents, including the Gulf stream and the Kuroshio in the middle latitudes as prominent examples. Together with other currents in low and high latitudes, they transfer substantial amounts of heat and momentum from the tropics to the polar regions, influencing local and global climate. The balmy jet of seawater also carries a great potential for producing clean offshore carbon-free energy. To understand the spatial and time variabilities of such currents is thus of vital importance for our society. In this project, the investigator will analyze the interplay between intrinsic nonlinearity and extrinsic stochastic forcing in shaping the observed variabilities. To disentangle such interactions and to analyze the impact of noise on dynamical and statistical behaviors of the governing systems are still grand challenges for many practical applications. To address these questions, the investigator will establish a new paradigm for the parameterization and the effective reduction of stochastically forced nonlinear dissipative equations, such as those governing large-scale oceanic flows. The proposed approach relies crucially on a dimension reduction methodology developed recently by the investigator and his colleagues. The knowledge gained in this project is expected to bring new understanding of the fundamental mechanisms of large-scale climate patterns. The award will also provide opportunities for the involvement of graduate students in this research.The dimension reduction methodology adopted and further developed in this project is based on a new stochastic parameterization technique for the unresolved small-scale dynamics of the underlying nonlinear stochastic partial differential equations. The investigator will derive explicit formulas that approximate the small-scale dynamics in terms of both the large-scale dynamics and the history of the noise path, leading thus to low-dimensional stochastic equations involving only large-scale variables. Such reduced equations are able to capture key dynamical features of the original stochastic systems and are much more accessible both theoretically and numerically. The impact of noise on both pattern formation in the classical Rayleigh-Benard convection and time-variability of the double-gyre wind-driven ocean circulation will be studied within the proposed theoretic framework. The parameterization formulas of unresolved small-scale dynamics are rigorously justified in the context of stochastic invariant manifolds. These formulas will be extended in this project to handle parameter regimes that are away from the onset of the first instability using a variational framework. The parameterization is pathwise in nature, which is very well suited for cases when one is not only interested in statistical quantities but also trajectory-wise dynamical behaviors. The formulas involve the history of the noise, which introduces memory into the corresponding reduced equations. This memory effect plays a fundamental role for the reduced equations to capture both qualitatively and quantitatively the dynamical and statistical features of the original system, and it has already been illustrated to be responsible for achieving good modeling performance even in situations that are known to be challenging for other traditional methods to operate. These reduced systems will help us understand better the impact of noise on the studied systems, which are otherwise computationally too expensive to obtain. By studying these reduced models subject to various types of noise, the proposed approach will also bring insights into possible ways of further improving the underlying stochastic models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海洋的动力学表现出几个大规模的持续流,包括墨西哥湾流和中纬度地区的黑潮就是突出的例子。它们与低纬度和高纬度的其他洋流一起,将大量热量和动量从热带地区转移到极地地区,影响当地和全球气候。温暖的海水喷射也为生产清洁的近海无碳能源提供了巨大的潜力。因此,了解这些水流的时空变化对我们的社会至关重要。在这个项目中,研究者将分析内在非线性和外在随机强迫之间的相互作用,形成观察到的变化。对于许多实际应用来说,解开这种相互作用并分析噪声对控制系统的动态和统计行为的影响仍然是一个巨大的挑战。为了解决这些问题,研究者将建立一个新的范式,用于参数化和有效地减少随机强迫非线性耗散方程,例如那些控制大规模海洋流动的方程。提出的方法主要依赖于研究者和他的同事最近开发的降维方法。在这个项目中获得的知识有望带来对大尺度气候模式基本机制的新认识。该奖项还将为研究生参与这项研究提供机会。本项目采用并进一步发展的降维方法是基于一种新的随机参数化技术,用于潜在的非线性随机偏微分方程的未解析小尺度动力学。研究者将推导出明确的公式,根据大尺度动力学和噪声路径的历史近似小尺度动力学,从而导致只涉及大尺度变量的低维随机方程。这种简化方程能够捕捉原始随机系统的关键动力学特征,并且在理论上和数值上都更容易接近。本文将在提出的理论框架内研究噪声对经典瑞利-贝纳德对流模式形成和双环流风驱动海洋环流时变性的影响。在随机不变流形的背景下,严格证明了未解析小尺度动力学的参数化公式。这些公式将在本项目中得到扩展,以使用变分框架处理远离第一次不稳定开始的参数制度。参数化本质上是路径化的,这非常适合于人们不仅对统计量感兴趣,而且对轨迹动态行为感兴趣的情况。这些公式涉及到噪声的历史,从而将记忆引入到相应的简化方程中。这种记忆效应对于简化方程在定性和定量上捕捉原始系统的动态和统计特征起着基本的作用,并且它已经被证明即使在已知对其他传统方法具有挑战性的情况下也能实现良好的建模性能。这些简化的系统将帮助我们更好地理解噪声对所研究系统的影响,否则计算成本太高而无法获得。通过研究这些受各种噪声影响的简化模型,所提出的方法也将为进一步改进底层随机模型的可能方法带来见解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Verifiability of the Data-Driven Variational Multiscale Reduced Order Model
数据驱动的变分多尺度降阶模型的可验证性
  • DOI:
    10.1007/s10915-022-02019-y
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Koc, Birgul;Mou, Changhong;Liu, Honghu;Wang, Zhu;Rozza, Gianluigi;Iliescu, Traian
  • 通讯作者:
    Iliescu, Traian
Transitions in stochastic non-equilibrium systems: Efficient reduction and analysis
  • DOI:
    10.1016/j.jde.2022.11.025
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    M. Chekroun;Honghu Liu;J. McWilliams;Shouhong Wang
  • 通讯作者:
    M. Chekroun;Honghu Liu;J. McWilliams;Shouhong Wang
Shock trace prediction by reduced models for a viscous stochastic Burgers equation
通过粘性随机 Burgers 方程的简化模型进行冲击轨迹预测
  • DOI:
    10.1063/5.0084955
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Chen, N.;Liu, H.;Lu, F.
  • 通讯作者:
    Lu, F.
Least-squares finite element method for ordinary differential equations
常微分方程的最小二乘有限元法
Conditional Gaussian nonlinear system: A fast preconditioner and a cheap surrogate model for complex nonlinear systems
条件高斯非线性系统:复杂非线性系统的快速预处理器和廉价代理模型
  • DOI:
    10.1063/5.0081668
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Chen, N.;Li, Y.;Liu, H.
  • 通讯作者:
    Liu, H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Honghu Liu其他文献

Minimum Reduced-Order Models via Causal Inference
通过因果推理的最小降阶模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nan Chen;Honghu Liu
  • 通讯作者:
    Honghu Liu
A Randomized Trial of Liraglutide for High-Risk Heart Failure Patients With Reduced Ejection Fraction
利拉鲁肽治疗射血分数降低的高危心力衰竭患者的随机试验
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Ong;P. Romano;Sarah E. Edgington;A. Auerbach;U. Harriet;Aronow;J. Black;T. Marco;J. Escarce;L. Evangelista;T. Ganiats;B. Greenberg;S. Greenfield;S. Kaplan;Asher;Kimchi;Honghu Liu;D. Lombardo;C. Mangione;M. Sarrafzadeh;K. Tong;G. Fonarow;J. Teerlink;G. Felker;J. McMurray;S. Solomon;María;Laura Monsalvo;J. Legg;F. Malik;Narimon Honarpour
  • 通讯作者:
    Narimon Honarpour
Associations Between Intimate Partner Violence and Posttraumatic Stress Symptom Severity in a Multiethnic Sample of Men With Histories of Childhood Sexual Abuse
在有童年性虐待史的多种族男性样本中,亲密伴侣暴力与创伤后应激症状严重程度之间的关联
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    T. Loeb;I. Holloway;Frank H. Galvan;G. Wyatt;H. Myers;D. Glover;Muyu Zhang;Honghu Liu
  • 通讯作者:
    Honghu Liu
The Stability of DNR Orders on Hospital Readmission
DNR 再次入院命令的稳定性
  • DOI:
    10.1086/jce199607107
  • 发表时间:
    1996
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Wenger;R. Oye;N. Desbiens;R. Phillips;J. Teno;A. Connors;Honghu Liu;Monika F. Zemsky;P. Kussin
  • 通讯作者:
    P. Kussin
Correlates of Attributing New Disability to Old Age
将新的残疾归因于年老的相关性
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    6.3
  • 作者:
    C. Sarkisian;Honghu Liu;K. Ensrud;K. Stone;C. Mangione;For The Study of;Osteoporotic Fractures in Men Research Group
  • 通讯作者:
    Osteoporotic Fractures in Men Research Group

Honghu Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Honghu Liu', 18)}}的其他基金

Collaborative Research: Non-Markovian Reduction of Nonlinear Stochastic Partial Differential Equations, and Applications to Climate Dynamics
合作研究:非线性随机偏微分方程的非马尔可夫约简及其在气候动力学中的应用
  • 批准号:
    1616450
  • 财政年份:
    2016
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Theoretical Establishment of Nonlinear Model Reduction Method and Its Application to Motor Analysis
非线性模型降阶方法的理论建立及其在电机分析中的应用
  • 批准号:
    23KJ1202
  • 财政年份:
    2023
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Model Reduction for Control-based Continuation of Complex Nonlinear Structures
复杂非线性结构基于控制的连续性的模型简化
  • 批准号:
    EP/X026027/1
  • 财政年份:
    2023
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Fellowship
Study of control theory based on a reduction of nonlinear dynamical systems
基于非线性动力系统约化的控制理论研究
  • 批准号:
    22H03663
  • 财政年份:
    2022
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: A Nonlinear Model Reduction Framework for Oscillatory Systems and Associated Data-Driven Inference Strategies
职业:振荡系统的非线性模型简化框架和相关的数据驱动推理策略
  • 批准号:
    2140527
  • 财政年份:
    2022
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Continuing Grant
Identifying control performance limits for active noise reduction in nonlinear systems
识别非线性系统中主动降噪的控制性能限制
  • 批准号:
    2722947
  • 财政年份:
    2021
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Studentship
CAREER: Formulations, Theory, and Algorithms for Nonlinear Model Reduction in Transport-Dominated Systems
职业:传输主导系统中非线性模型简化的公式、理论和算法
  • 批准号:
    2046521
  • 财政年份:
    2021
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Continuing Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2021
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Discovery Grants Program - Individual
Frameworks for Generic Robust Inference, Mismeasured Spatial and Network Data, and Nonlinear Dimension Reduction
通用鲁棒推理、误测空间和网络数据以及非线性降维的框架
  • 批准号:
    1950969
  • 财政年份:
    2020
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Standard Grant
Numerical Methods for Nonlinear Partial Differential Equations, with applications to Optimal Transportation, and Geometric Data Reduction
非线性偏微分方程的数值方法,及其在最优运输和几何数据简化中的应用
  • 批准号:
    RGPIN-2016-03922
  • 财政年份:
    2020
  • 资助金额:
    $ 11.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了