Collaborative Research: RI: Small: Advancing Theory and Practice of Trustworthy Machine Learning via Bi-Level Optimization

合作研究:RI:小型:通过双层优化推进可信机器学习的理论和实践

基本信息

  • 批准号:
    2207053
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

Deep learning (DL) has achieved remarkable success owing to its superior prediction ability, with a wide range of applications in computer vision and natural language processing. Yet, one of its critical shortcomings is the lack of trustworthiness. That is, they are often overcooked during training such that (1) the learned model is highly vulnerable to small input perturbations at the testing time (namely, lack of robustness); And (2) biased artifacts embedded in the training data can be memorized and then passed on to the decision making process (namely, lack of fairness). To address these issues, this project attempts to develop a new family of trustworthy learning algorithms with algorithmic generality, theoretical soundness, and scalability to large-scale datasets and models. The outcome of this project could create a new optimization foundation of trustworthy DL that can not only unit robustness and fairness into one coherent learning paradigm but also expand the applicability of DL to a series of high-stakes applications such as autonomous driving and cybersecurity. Interdisciplinary training in computer science, applied mathematics, and engineering will be provided to all-level students, especially for students from underrepresented groups. The main technical aim of this project is to advance the theoretical understanding and practical implementations of trustworthy DL through the lens of bi-level optimization (BLO), namely, hierarchical learning involving two nested optimization tasks. The research plan consists of three thrusts. The first thrust develops a new BLO-oriented robust learning framework including defenses against adversarial instances and distribution shifts. The developed technique is also applied to building a full-stack (from train time to test time) robustness evaluation pipeline. The second thrust expands the first one and develops BLO algorithms to co-improve robustness and fairness in two practical scenarios, learning without sensitive attribute annotation, and learning with scarce training data and model information. The third thrust focuses on developing scalable and theoretically-grounded computational methods for BLO so as to achieve a high-accuracy, high-resilience, and high-throughput trustworthy learning paradigm. The project will result in the dissemination of shared toolbox and benchmarks to the broader optimization and machine learning communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习因其优越的预测能力而取得了显著的成功,在计算机视觉和自然语言处理中有着广泛的应用。然而,它的一个关键缺点是缺乏可信度。也就是说,它们经常在训练过程中被过度煮熟,从而(1)学习的模型在测试时非常容易受到小的输入扰动(即,缺乏稳健性);以及(2)嵌入在训练数据中的有偏差的伪像可以被记忆,然后传递到决策过程(即,缺乏公平性)。为了解决这些问题,本项目试图开发一系列新的可信学习算法,具有算法通用性、理论可靠性和对大规模数据集和模型的可伸缩性。该项目的成果可以创建一个新的可信DL的优化基础,不仅可以将稳健性和公平性统一到一个连贯的学习范式中,而且还可以将DL的适用性扩展到一系列高风险的应用,如自动驾驶和网络安全。将向所有层次的学生提供计算机科学、应用数学和工程方面的跨学科培训,特别是针对代表性不足群体的学生。该项目的主要技术目标是通过双层优化(BLO)的镜头,即涉及两个嵌套优化任务的分层学习,促进对可信DL的理论理解和实际实现。这项研究计划包括三个推进。第一个推力开发了一个新的面向BLO的稳健学习框架,包括对敌对实例和分布转移的防御。所开发的技术还应用于构建从训练时间到测试时间的全栈健壮性评估流水线。第二个推力扩展了第一个推力,并开发了BLO算法,以在两个实际场景中共同提高稳健性和公平性,即无需敏感属性注释的学习和利用稀缺的训练数据和模型信息的学习。第三个重点是为BLO开发可扩展的、有理论基础的计算方法,以实现高精度、高弹性和高通量的可信学习范式。该项目将导致向更广泛的优化和机器学习社区传播共享工具箱和基准。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shiyu Chang其他文献

The sweet taste receptors in Lemuriformes respond to aspartame, a non-nutritive sweetener and critical residues mediating their taste
  • DOI:
    10.1016/j.biochi.2024.07.005
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuqing Wang;Shiyu Chang;Shangyang Lu;Mingqiong Tong;Fanyu Kong;Bo Liu
  • 通讯作者:
    Bo Liu
Simple yet Effective Bridge Reasoning for Open-Domain Multi-Hop Question Answering
开放域多跳问答的简单而有效的桥接推理
  • DOI:
    10.18653/v1/d19-5806
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenhan Xiong;Mo Yu;Xiaoxiao Guo;Hong Wang;Shiyu Chang;Murray Campbell;William Yang Wang
  • 通讯作者:
    William Yang Wang
Classification of long-term disease patterns in inflammatory bowel disease and analysis of their associations with adverse health events
  • DOI:
    10.1186/s12889-024-20638-y
  • 发表时间:
    2024-11-11
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Fan Li;Yu Chang;Zhaodi Wang;Zhi Wang;Qi Zhao;Xiaoping Han;Zifeng Xu;Chanjiao Yu;Yue Liu;Shiyu Chang;Hongyan Li;Sileng Hu;Yuqin Li;Tongyu Tang
  • 通讯作者:
    Tongyu Tang
Robust Task Clustering for Deep Many-Task Learning
用于深度多任务学习的鲁棒任务聚类
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mo Yu;Xiaoxiao Guo;Jinfeng Yi;Shiyu Chang;Saloni Potdar;G. Tesauro;Haoyu Wang;Bowen Zhou
  • 通讯作者:
    Bowen Zhou
A new approach for detecting attenuation changes during high-intensity focused ultrasound
一种检测高强度聚焦超声期间衰减变化的新方法

Shiyu Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
  • 批准号:
    2313131
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
  • 批准号:
    2345528
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
  • 批准号:
    2232298
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
  • 批准号:
    2232055
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了