Spin-orbit coupled diabatic potential energy surfaces for quantum dynamics

量子动力学的自旋轨道耦合非绝热势能面

基本信息

项目摘要

Vibronic and relativistic couplings among electronic states are the origin of nonadiabatic effects in molecular dynamics and often have a significant impact on reactions and spectra. Important examples are ultrafast radiationless processes in organic photochemistry, which are induced by conical intersections, or catalytic reactions with transition metals involving spin-forbidden mechanisms. The fundamental understanding and theoretical treatment of such nonadiabatic processes requires the correct handling of such couplings and the determination of fully coupled potential energy surfaces (PESs). The aim of the proposed project is the establishment of a method to generate full-dimensional diabatic PESs including relativistic (e. g. spin-orbit) couplings for medium sized molecules and to apply this new methodology to important benchmark systems. The method will treatall relevant coupling effects with high accuracy and will yield PESs in closed mathematical form to be used in quantum dynamics studies. To this end, our method called Effective Relativistic Coupling by symptotic Representation (ERCAR), which has been developed over the past few years, will be used. So far the method has been applied to the methyl iodide (CH 3 I) system, which has a particularly simple electronic structure within the methyl fragment. Next we want to apply the ERCAR methodology to iodobenzene (C6H5I) which has a more challenging electronic structure in the benzene fragment, presumably leading to new effects in the quantum dynamics. The goal of the proposed project is a thorough theoretical treatment of the photodissociationdynamics of iodobenzene in comparison to experiment and that of methyl iodide.
电子态之间的振动和相对论耦合是分子动力学中非绝热效应的起源,并且通常对反应和光谱产生重大影响。重要的例子是有机光化学中的超快无辐射过程,这是由圆锥形交叉引起的,或涉及自旋禁止机制的过渡金属催化反应。对此类非绝热过程的基本理解和理论处理需要正确处理此类耦合并确定完全耦合势能面(PES)。该项目的目标是建立一种方法来生成全维非绝热 PES,包括中等大小分子的相对论(例如自旋轨道)耦合,并将这种新方法应用于重要的基准系统。该方法将以高精度处理所有相关的耦合效应,并产生封闭数学形式的 PES,用于量子动力学研究。为此,我们将使用过去几年开发的称为渐近表示的有效相对论耦合(ERCAR)的方法。到目前为止,该方法已应用于甲基碘(CH 3 I)体系,该体系的甲基片段内具有特别简单的电子结构。接下来,我们希望将 ERCAR 方法应用于碘苯 (C6H5I),其苯片段中具有更具挑战性的电子结构,可能会导致量子动力学中的新效应。该项目的目标是与实验和碘甲烷的光解离动力学进行比较,对碘苯的光解动力学进行彻底的理论处理。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems.
完整的核排列反演不变人工神经网络 (CNPI-ANN) Diabatization 用于精确处理电子振动耦合问题
  • DOI:
    10.1021/acs.jpca.0c05991
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David M. G. Williams;Wolfgang Eisfeld
  • 通讯作者:
    Wolfgang Eisfeld
Block-diagonalization as a tool for the robust diabatization of high-dimensional potential energy surfaces.
  • DOI:
    10.1063/1.4943869
  • 发表时间:
    2016-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Florian Venghaus;W. Eisfeld
  • 通讯作者:
    Florian Venghaus;W. Eisfeld
A new approach for the development of diabatic potential energy surfaces: Hybrid block-diagonalization and diabatization by ansatz.
  • DOI:
    10.1063/1.4967258
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nils Wittenbrink;Florian Venghaus;David M G Williams;W. Eisfeld
  • 通讯作者:
    Nils Wittenbrink;Florian Venghaus;David M G Williams;W. Eisfeld
Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3.
用于精确振动量子动力学的非绝热神经网络势-平面NO3的测试案例
  • DOI:
    10.1063/1.5125851
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David M. G. Williams;Wolfgang Eisfeld
  • 通讯作者:
    Wolfgang Eisfeld
A general method for the development of diabatic spin-orbit models for multi-electron systems.
开发多电子系统非绝热自旋轨道模型的通用方法
  • DOI:
    10.1063/5.0078908
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Fritsch;T. Weike;W. Eisfeld
  • 通讯作者:
    W. Eisfeld
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Wolfgang Eisfeld其他文献

Professor Dr. Wolfgang Eisfeld的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Wolfgang Eisfeld', 18)}}的其他基金

Theoretische Untersuchung kleiner [C,H,N]-Radikale: Kinetik, Spektroskopie und nichtadiabatische Dynamik
小[C,H,N]自由基的理论研究:动力学、光谱学和非绝热动力学
  • 批准号:
    5442159
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretische Untersuchungen zur Photodissoziation des Nitratradikals
硝酸根光解离的理论研究
  • 批准号:
    5128812
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships

相似国自然基金

铁磁体/拓扑绝缘体异质结磁性邻近效应及Spin Orbit Torque研究
  • 批准号:
    11574129
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目

相似海外基金

Interacting electronic phases of spin-orbit coupled materials
自旋轨道耦合材料的相互作用电子相
  • 批准号:
    532505-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Analytic Solutions for rotating, spin-orbit coupled Bose-Einstein Condensates
旋转、自旋轨道耦合玻色-爱因斯坦凝聚态的解析解
  • 批准号:
    564084-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Measurement of Spin-Orbit-Coupled Fermi Gases in 1D
一维自旋轨道耦合费米气体的测量
  • 批准号:
    565835-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Topology and Frustration in Spin-Orbit Coupled Quantum Magnets
自旋轨道耦合量子磁体的拓扑和挫败感
  • 批准号:
    1929311
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Interacting electronic phases of spin-orbit coupled materials
自旋轨道耦合材料的相互作用电子相
  • 批准号:
    532505-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
Quantum Many-Body Physics in Spin-Orbit Coupled Bose Gases
自旋轨道耦合玻色气体中的量子多体物理
  • 批准号:
    2012185
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Local moments in spin-orbit coupled systems
自旋轨道耦合系统中的局部矩
  • 批准号:
    435049553
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Study for pressure-induced unusual metallic state in high-correlated and spin-orbit coupled compound, alpha-Sr2VO4
高相关自旋轨道耦合化合物 α-Sr2VO4 中压力诱导异常金属态的研究
  • 批准号:
    20K03830
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel transport phenomena of strongly spin-orbit coupled electrons controlled through magnetic ions
通过磁离子控制的强自旋轨道耦合电子的新颖输运现象
  • 批准号:
    19H01839
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interacting electronic phases of spin-orbit coupled materials
自旋轨道耦合材料的相互作用电子相
  • 批准号:
    532505-2019
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了