Quantum Many-Body Physics in Spin-Orbit Coupled Bose Gases
自旋轨道耦合玻色气体中的量子多体物理
基本信息
- 批准号:2012185
- 负责人:
- 金额:$ 35.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General audience abstract:Many technologically important material properties, such as the conductivity of metals, can be understood by studying the behavior of a single particle (e.g. an electron) in the material. However, some novel material properties, such as superconductivity and magnetism, depend on how particles interact with one another. When such interparticle interactions are strong, intriguing properties that cannot be explained by the single-particle picture may emerge. In addition, spin-orbit coupling (SOC) - the interaction between a particle’s spin and its motion - plays a crucial role in a wide range of phenomena. The interplay between interparticle interactions and SOC may lead to new quantum materials which hold promise for advanced technologies such as topological quantum computers and dissipationless electronics. Directly studying such materials can be challenging because of imperfections and the lack of experimental controllability. This project aims to build a highly controllable quantum simulator based on atomic Bose gases to explore novel strongly correlated quantum phenomena induced by the interplay between interactions and SOC/gauge fields in low-dimensional quantum fluids. The aim is to provide useful insights for designing new materials and inventing new quantum devices. This project will enhance collaborations between the experimental group doing this work and theorists in the field. Further, the project will integrate research with the education of graduate and undergraduate students from both physics and engineering. These students will learn in an interdisciplinary environment and acquire knowledge and skills in such areas as atomic/molecular/optical physics, condensed matter physics, quantum physics, photonics and electronics. Technical audience abstract:The experimental team will engineer an atomic (Rb-87) Bose gas subjected to synthetic gauge fields and effective spin orbit coupling (SOC) (optically generated using Raman coupling) in novel geometries based on optical lattices (periodic potentials created by lasers) and synthetic spaces (constructed using internal states of atoms). The presence of the lattices can confine atoms in low dimensional geometries with controllable inter-particle interactions and correlations, allowing for studying novel quantum many-body physics induced by the interplay between interactions and synthetic gauge fields. One main direction of the project is to study atoms subjected to gauge fields in spaces with nontrivial geometries, and to explore novel physics inherent to such spaces. For example, engineering a synthetic magnetic field threading a synthetic cylindrical surface realizes a synthetic Hall cylinder where a lattice with a symmetry-protected topological band structure emerges. The program will study the effects of interactions on such topological bands and associated quantum transport, dynamics and phase transitions. Such a Bose gas can be further prepared in real-space 1D tubes which allow for enhanced and tunable inter-particle interactions. As another example, the team aims to prepare a Bose gas with 1D SOC along the 1D tubes, where the exact match of the dimension of both the real space and SOC would notably increase the effects of 1D SOC and also enhance the quantum fluctuations in 1D, leading to new many-body phenomena. The interplay between SOC and tunable inter-particle interactions is theoretically predicted to modify the well-known Tonks-Luttinger physics, giving rise to e.g. non-Luttinger quantum liquids. This program is not only interesting for cold atom research, but is also relevant for condensed matter physics, such as insights to interacting topological physics/superfluids and novel strongly correlated quantum matter in low dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多技术上重要的材料特性,例如金属的导电性,可以通过研究材料中单个粒子(例如电子)的行为来理解。然而,一些新的材料特性,如超导性和磁性,取决于粒子如何相互作用。当这种粒子间的相互作用很强时,可能会出现单粒子图像无法解释的有趣特性。此外,自旋轨道耦合(SOC)-粒子的自旋和运动之间的相互作用-在广泛的现象中起着至关重要的作用。粒子间相互作用和SOC之间的相互作用可能导致新的量子材料,这些材料有望用于拓扑量子计算机和无耗散电子学等先进技术。直接研究这种材料可能具有挑战性,因为不完美和缺乏实验可控性。该项目旨在建立一个基于原子玻色气体的高度可控的量子模拟器,以探索低维量子流体中由相互作用和SOC/规范场之间的相互作用引起的新的强关联量子现象。其目的是为设计新材料和发明新的量子器件提供有用的见解。该项目将加强从事这项工作的实验小组与该领域理论家之间的合作。此外,该项目将把研究与物理学和工程学的研究生和本科生的教育结合起来。 这些学生将在跨学科的环境中学习,并获得原子/分子/光学物理,凝聚态物理,量子物理,光子学和电子学等领域的知识和技能。技术观众摘要:实验团队将设计一种原子(Rb-87)玻色气体,该气体受到合成规范场和有效自旋轨道耦合(SOC)(使用拉曼耦合光学产生)的影响,这种耦合基于光学晶格(由激光产生的周期性势)和合成空间(使用原子的内部状态构建)。晶格的存在可以将原子限制在具有可控粒子间相互作用和关联的低维几何中,从而允许研究由相互作用和合成规范场之间的相互作用引起的新的量子多体物理。该项目的一个主要方向是研究在非平凡几何空间中受到规范场作用的原子,并探索这种空间所固有的新物理。例如,设计穿过合成圆柱形表面的合成磁场实现了合成霍尔圆柱体,其中出现了具有受保护的拓扑带结构的晶格。该计划将研究相互作用对这种拓扑带和相关的量子传输,动力学和相变的影响。这样的玻色气体可以进一步在真实空间1D管中制备,这允许增强和可调的粒子间相互作用。作为另一个例子,该团队的目标是制备一种玻色气体,其中沿着1D管具有1D SOC,其中真实的空间和SOC的尺寸的精确匹配将显着增加1D SOC的效果,并增强1D中的量子涨落,从而导致新的多体现象。理论上预测SOC和可调粒子间相互作用之间的相互作用会修改著名的Tonks-Luttinger物理学,从而产生例如非Luttinger量子液体。该项目不仅对冷原子研究很有意义,而且对凝聚态物理也很有意义,例如对相互作用拓扑物理/超流体和低维强关联量子物质的见解。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bose-Einstein Condensate on a Synthetic Topological Hall Cylinder
- DOI:10.1103/prxquantum.3.010316
- 发表时间:2018-09
- 期刊:
- 影响因子:9.7
- 作者:Chuan-Hsun Li;Yangqian Yan;Shih-Wen Feng;S. Choudhury;D. Blasing;Qi Zhou;Yong P. Chen
- 通讯作者:Chuan-Hsun Li;Yangqian Yan;Shih-Wen Feng;S. Choudhury;D. Blasing;Qi Zhou;Yong P. Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong Chen其他文献
Predictions for Central Lymph Node Metastasis of Papillary Thyroid Carcinoma via CNN-Based Fusion Modeling of Ultrasound Images
通过基于 CNN 的超声图像融合模型预测甲状腺乳头状癌中央淋巴结转移
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:1.9
- 作者:
Yong Chen;Yan;Z. Cai;Mian Jiang - 通讯作者:
Mian Jiang
Shock mitigation effects of cellular cladding on submersible hull subjected to deep underwater explosion
多孔包壳对深水下爆炸作用下潜水器的冲击缓解效果
- DOI:
10.1016/j.oceaneng.2016.03.037 - 发表时间:
2016-05 - 期刊:
- 影响因子:5
- 作者:
Caiyu Yin;Zeyu Jin;Yong Chen;Hongxing Hua - 通讯作者:
Hongxing Hua
Algorithm-level Feedback-controlled Adaptive data prefetcher: Accelerating data access for high-performance processors
算法级反馈控制自适应数据预取器:加速高性能处理器的数据访问
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:1.4
- 作者:
Yong Chen;Huaiyu Zhu;Hui Jin;Xian - 通讯作者:
Xian
Experimental investigation on the characteristics of maximum bubble size of subcooled flow boiling in narrow rectangular channel under different system pressure
不同系统压力下窄矩形通道过冷流沸腾最大气泡尺寸特性的实验研究
- DOI:
10.1016/j.ijheatmasstransfer.2021.121426 - 发表时间:
2021-09 - 期刊:
- 影响因子:5.2
- 作者:
Lin Zhang;Hanzhou Liu;Deqi Chen;Xiaowei Zhou;Yong Chen - 通讯作者:
Yong Chen
Determination of FCMC and SCMC and Speculation of Hexagonally Packed Rods Concentration and Palisade Layer Structure Concentration of SDBS and SDS by Ultraviolet-visible Spectrophotometry
紫外可见分光光度法测定FCMC和SCMC以及六方堆积棒浓度和SDBS和SDS栅栏层结构浓度的推测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:1
- 作者:
Zhaoxi Huang;Fenghui Zhao;Min Liu;Yong Chen - 通讯作者:
Yong Chen
Yong Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong Chen', 18)}}的其他基金
Collaborative Research: Fusion of Siloed Data for Multistage Manufacturing Systems: Integrative Product Quality and Machine Health Management
协作研究:多级制造系统的孤立数据融合:集成产品质量和机器健康管理
- 批准号:
2323084 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
Conference: 2024 Manufacturing Science and Engineering Conference and 52nd North American Manufacturing Research Conference; Knoxville, Tennessee; 17-21 June 2024
会议:2024年制造科学与工程会议暨第52届北美制造研究会议;
- 批准号:
2344983 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
Phase-II IUCRC Texas Tech University: Center for Cloud and Autonomic Computing
第二阶段 IUCRC 德克萨斯理工大学:云和自主计算中心
- 批准号:
1939140 - 财政年份:2020
- 资助金额:
$ 35.77万 - 项目类别:
Continuing Grant
Collaborative Research: CESER: EAGER: "FabWave" - A Pilot Manufacturing Cyberinfrastructure for Shareable Access to Information Rich Product Manufacturing Data
合作研究:CESER:EAGER:“FabWave”——用于共享访问信息丰富的产品制造数据的试点制造网络基础设施
- 批准号:
1812675 - 财政年份:2018
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Tuning Extreme-scale Storage Stack through Deep Reinforcement Learning
CSR:小型:协作研究:通过深度强化学习调整超大规模存储堆栈
- 批准号:
1817094 - 财政年份:2018
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
Elements:Software:NSCI: Empowering Data-driven Discovery with a Provenance Collection, Management, and Analysis Software Infrastructure
元素:软件:NSCI:通过来源收集、管理和分析软件基础设施支持数据驱动的发现
- 批准号:
1835892 - 财政年份:2018
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
Collaborative Research: Strain Based Devices for Switches and Memory Applications
合作研究:用于开关和存储器应用的基于应变的器件
- 批准号:
1711332 - 财政年份:2017
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Uncovering Vulnerabilities in Parallel File Systems for Reliable High Performance Computing
SHF:小型:协作研究:发现并行文件系统中的漏洞以实现可靠的高性能计算
- 批准号:
1718336 - 财政年份:2017
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
Additive Manufacturing of Controlled Anisotropic Materials via Electrically Assisted Nanocomposite Fabrication
通过电辅助纳米复合材料制造受控各向异性材料的增材制造
- 批准号:
1663663 - 财政年份:2017
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
Dynamics and Excitations of Spin-Orbit-Coupled Bose-Einstein Condensates
自旋轨道耦合玻色-爱因斯坦凝聚体的动力学和激发
- 批准号:
1708134 - 财政年份:2017
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Continuing Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Research Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
- 批准号:
EP/X042812/1 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Fellowship
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
- 批准号:
2337931 - 财政年份:2024
- 资助金额:
$ 35.77万 - 项目类别:
Continuing Grant
Elements: Embedding Framework for Quantum Many-Body Simulations
元素:量子多体模拟的嵌入框架
- 批准号:
2310582 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Standard Grant
Geometric approaches to quantum many body problems
量子多体问题的几何方法
- 批准号:
DE230100829 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Discovery Early Career Researcher Award
INTERACTIVE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS
多体量子系统的交互动力学
- 批准号:
EP/X030881/1 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Research Grant
Mathematical methods for quantum many-body systems
量子多体系统的数学方法
- 批准号:
2895294 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Studentship
Many-Body Theory of Nonlinear Responses in Topological Quantum Materials
拓扑量子材料非线性响应的多体理论
- 批准号:
2889795 - 财政年份:2023
- 资助金额:
$ 35.77万 - 项目类别:
Studentship