RUI: Collaborative Research: An Engineering Design Approach for the Tandem Catalysis of Carbon Dioxide (CO2) using Nanoporous Bi-layer Structures
RUI:协作研究:利用纳米多孔双层结构串联二氧化碳(CO2)催化的工程设计方法
基本信息
- 批准号:2207302
- 负责人:
- 金额:$ 25.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As electricity derived from renewable sources becomes cheaper, its use for driving commercially relevant chemical processes has become increasingly viable, leading the path towards a sustainable energy economy. The combined research team at Purdue and University of Wisconsin Lacrosse are designing new catalysts for the conversion of carbon dioxide (CO2) to value-added products such as ethylene at industrially relevant conversion rates. The team will use their specific expertise to engineer novel layered catalyst structures, allowing the resulting materials to be more robust, efficient, and faster for CO2 conversion. This collaborative project involving both undergraduate and graduate researchers will also impact a broad range of technologies related to renewable energy, transportation, and defense. The project will promote knowledge-sharing activities such as regular joint meetings, undergraduate research mentored closely by graduate students, and inclusion of research activities into the curriculum. The project will also involve participation of underrepresented groups in working with research-intensive universities with a focus on skill-building activities such as group presentations, and scientific writing.This project aims to develop porous bi-layer catalysts on gas-diffusion layer (GDL) substrates which can then be used inside gas-fed carbon dioxide (CO2) electrolyzers allowing conversion to valuable C2+ products such as ethylene, at industrially relevant rates. The guiding principle of the project rests on using the bi-layer structure to break CO2 reduction scaling relations by creating asymmetric reaction sites, allowing greater selectivity through a cascade approach than from a single material. The use of a GDL substrate enables the possibility of high-rate conversions not possible with traditional reactors. The project will identify the underlying factors that determine structure-property relationships of the composite bilayer-GDL heterostructure with a focus on controlling the pore size, grain size, and associated grain boundary density. Specific metal/metal oxide heterostructures will be chosen based on recently available theoretical predictions in order to reduce the reaction overpotential, which often limits the energetic efficiency. In parallel, a carefully controlled pore size will be used to promote C-C coupling reactions through nano-confinement effects. This bilayer-GDL composite structure represents a unique combination of design elements, arising from two unique skill sets in catalyst fabrication and electrochemical testing. Coupled with a novel flow-reactor, the methodology promises to provide valuable insight into the challenging problem of high rate CO2 conversion to C2+ products such as ethylene.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着从可再生能源衍生的电力变得更便宜,它用于推动商业相关的化学过程的使用变得越来越可行,从而带来了通往可持续能源经济的道路。普渡大学和威斯康星大学长曲棍球的合并研究团队正在设计新的催化剂,以将二氧化碳(CO2)转化为增值产品,例如以工业相关的转换率。该团队将使用其特定的专业知识来设计新颖的分层催化剂结构,从而使所得材料更加强大,高效和更快地进行CO2转换。这个涉及本科和研究生研究人员的合作项目还将影响与可再生能源,运输和国防有关的广泛技术。该项目将促进知识共享活动,例如定期联合会议,研究生密切指导的本科研究以及将研究活动纳入课程。 The project will also involve participation of underrepresented groups in working with research-intensive universities with a focus on skill-building activities such as group presentations, and scientific writing.This project aims to develop porous bi-layer catalysts on gas-diffusion layer (GDL) substrates which can then be used inside gas-fed carbon dioxide (CO2) electrolyzers allowing conversion to valuable C2+ products such as ethylene, at与工业相关的费率。该项目的指导原理取决于使用双层结构通过创建不对称反应位点来打破二氧化碳的缩放关系,从而通过级联方法比单个材料更有选择性。 GDL底物的使用使传统反应堆无法进行高速转换。该项目将确定确定复合双层GDL异质结构的结构特性关系的潜在因素,重点是控制孔径,晶粒尺寸和相关的晶粒边界密度。将根据最近可用的理论预测选择特定的金属/金属氧化物异质结构,以减少反应过电势,这通常会限制能量效率。同时,经过精心控制的孔径将用于通过纳米结合效应来促进C-C耦合反应。这种双层GDL复合结构代表了设计元素的独特组合,这是由催化剂制造和电化学测试中的两个独特技能集引起的。加上一种新颖的流动反应器,该方法有望提供有价值的洞察力,以了解高速二氧化碳转换为C2+产品(例如乙烯)的具有挑战性的问题。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来获得支持的。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Copolymers for electronic, optical, and sensing applications with engineered physical properties
- DOI:10.1063/5.0141885
- 发表时间:2023-07
- 期刊:
- 影响因子:4
- 作者:Yuxuan Zhang;Sunghwan Lee
- 通讯作者:Yuxuan Zhang;Sunghwan Lee
Enhancing memristor fundamentals through instrumental characterization and understanding reliability issues
通过仪器表征和理解可靠性问题增强忆阻器基础知识
- DOI:10.1039/d3ma00069a
- 发表时间:2023
- 期刊:
- 影响因子:5
- 作者:Qin, Fei;Zhang, Yuxuan;Song, Han Wook;Lee, Sunghwan
- 通讯作者:Lee, Sunghwan
Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries
用于快速充电锂离子电池的镍基层状氧化物正极的开发最新成果
- DOI:10.1039/d2nr05701h
- 发表时间:2023
- 期刊:
- 影响因子:6.7
- 作者:Zhang, Yuxuan;Kim, Jae Chul;Song, Han Wook;Lee, Sunghwan
- 通讯作者:Lee, Sunghwan
A Sulfur Cathode Design Strategy for Polysulfide Restrictions and Kinetic Enhancements in Li-S Batteries through Oxidative Chemical Vapor Deposition
- DOI:10.1016/j.nanoen.2023.108756
- 发表时间:2023-08
- 期刊:
- 影响因子:17.6
- 作者:Yuxuan Zhang;Hancheul Song;K. Crompton;Xixian Yang;K. Zhao;Sunghwan Lee
- 通讯作者:Yuxuan Zhang;Hancheul Song;K. Crompton;Xixian Yang;K. Zhao;Sunghwan Lee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sunghwan Lee其他文献
Amorphous structure and electrical performance of low-temperature annealed amorphous indium zinc oxide transparent thin film transistors
低温退火非晶氧化铟锌透明薄膜晶体管的非晶结构与电性能
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Sunghwan Lee;Brian Bierig;D. Paine - 通讯作者:
D. Paine
NSF REU entrepreneurially minded applied energy program evaluation: traditional delivery versus alternative delivery (implemented during COVID-19)
NSF REU 具有创业精神的应用能源计划评估:传统交付与替代交付(在 COVID-19 期间实施)
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
L. Bosman;E. Soto;Jason K. Ostanek;Jose M. Garcia;Sunghwan Lee;Walter Leon - 通讯作者:
Walter Leon
Thin Film Oxy-Apatite Anodes for Solid Oxide Fuel Cells
用于固体氧化物燃料电池的薄膜氧磷灰石阳极
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sunghwan Lee;Xiaofei Guan;S. Ramanathan - 通讯作者:
S. Ramanathan
The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors
金属化接触电阻对长沟道未退火非晶In-Zn-O薄膜晶体管场效应迁移率测量的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Sunghwan Lee;Hongsik Park;D. Paine - 通讯作者:
D. Paine
Enhanced doping and structure relaxation of unsubstituted polythiophene through oxidative chemical vapor deposition and mild plasma treatment
通过氧化化学气相沉积和温和等离子体处理增强未取代聚噻吩的掺杂和结构弛豫
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuxuan Zhang;Mingyuan Liu;Hyo;Byung;Jinwook Baek;Kwangsoo No;H. Song;Sunghwan Lee - 通讯作者:
Sunghwan Lee
Sunghwan Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sunghwan Lee', 18)}}的其他基金
I-Corps Team: Sustainable Battery Electrode Manufacturing with High Active Material Loading
I-Corps 团队:高活性材料负载的可持续电池电极制造
- 批准号:
2236020 - 财政年份:2022
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
P-type Oxides for CMOS Devices: Thermodynamics-based In-situ Synthesis and In-Situ Integration
用于 CMOS 器件的 P 型氧化物:基于热力学的原位合成和原位集成
- 批准号:
1931088 - 财政年份:2019
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
P-type Oxides for CMOS Devices: Thermodynamics-based In-situ Synthesis and In-Situ Integration
用于 CMOS 器件的 P 型氧化物:基于热力学的原位合成和原位集成
- 批准号:
1808168 - 财政年份:2018
- 资助金额:
$ 25.5万 - 项目类别:
Continuing Grant
相似国自然基金
面向制造服务协作的工业互联网平台运营鲁棒性分析与调控机理研究
- 批准号:52175448
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
鲁棒协作式输出调节及应用研究
- 批准号:
- 批准年份:2019
- 资助金额:62 万元
- 项目类别:面上项目
基于多节点协作的高鲁棒性低度复杂的抗窃听技术研究
- 批准号:61501347
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多层异构网中基于残缺信道矩阵的鲁棒性干扰对齐问题研究
- 批准号:61401178
- 批准年份:2014
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
非线性多自主体系统协作式鲁棒输出调节问题研究
- 批准号:61403082
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346565 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
- 批准号:
2346564 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Glacier resilience during the Holocene and late Pleistocene in northern California
合作研究:RUI:北加州全新世和晚更新世期间的冰川恢复力
- 批准号:
2303409 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
- 批准号:
2426728 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant
Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
- 批准号:
2337506 - 财政年份:2024
- 资助金额:
$ 25.5万 - 项目类别:
Standard Grant