P-type Oxides for CMOS Devices: Thermodynamics-based In-situ Synthesis and In-Situ Integration

用于 CMOS 器件的 P 型氧化物:基于热力学的原位合成和原位集成

基本信息

  • 批准号:
    1808168
  • 负责人:
  • 金额:
    $ 25.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical:Silicon metal oxide semiconductors have been the industry standard in electronic devices for decades. However, new non-silicon thin film semiconducting metal oxides have gained prominence in recent years. They are a promising new technology for electronic devices, particularly next generation displays. Oxide electronics have high carrier mobility, allowing them to conduct current efficiently, and can be fabricated at low-temperatures. This makes them compatible with flexible electronics. Doped semiconductors are n-type or p-type, depending upon if the majority charge carriers are electrons or holes. The vast majority of thin film oxide semiconductors are n-type, which limits their applications to unipolar devices. The development of more sophisticated circuits using complementary metal-oxide-semiconductor (CMOS) technology requires both p- and n-type devices. The goal of this project is to resolve the scientific questions that prevent the realization of high performance p- and n-type oxide semiconductors. This in turn will enable the development of low-temperature processed flexible CMOS inverters and other circuits. Fundamental device physics together with thermodynamic and kinetic considerations are the key components to enable in-situ synthesis of the oxides and fabrication of CMOS devices. The combination of fundamental materials processing and device fabrication has educational impacts in and out of the classroom at Baylor University. Low cost metal oxide technology is ideal for a prototype fabrication lab in an undergraduate course on electronic materials and devices. Strong connections between the PI and local industry will further enhance the value of the professional training experience for students. The project also includes outreach to local schools, such as The Annual Central Texas Science and Engineering Fair for middle and high school students.Technical:The recent development of several wide bandgap oxide semiconductors and the fabrication of basic thin film transistor (TFT) structures have garnered attention for applications in flexible electronics and high performance TFTs. However, research efforts of these oxide TFT devices are currently limited to n-type oxide TFTs. Recently, promising p-type oxides have emerged providing the opportunity to explore applications in oxide-based complementary metal-oxide-semiconductor (CMOS) devices. The development of reproducible p-type oxide semiconductors and their TFT devices will greatly accelerate flexible electronics and will pioneer the development of new oxide CMOS devices. A simple binary oxide (SnOx, 1x2) is an emerging candidate for a p-type semiconductor due to the possible formation of ns2 hybrid orbitals. However, the growth conditions for p-type SnOx are believed to be narrow, due to the formation of SnO2 (n-type) and the precipitation of metallic Sn. This research suggests reproducible approaches to synthesize p-type oxide semiconductors at low temperatures (T) below 200 ?C. Low-T (200 ?C) in-situ synthesis of p-type SnOx (1x2) is a consequence of the thermodynamic instability of the metallization material in contact with SnO2. The same metallization material must be thermodynamically stable with n-type In(Ga)ZnO. This unique in-situ approach offers simple solutions to the complex challenges of synthesizing p-type oxides: the metallization of both p- and n-type oxide TFTs, and the low-T annealing processes (necessary for improving TFT performance). As a result, oxide CMOS devices will be fabricated in situ. This project also contains strategies for controlling hole carrier densities. The use of high pressure oxidation relates carrier density to the oxygen fugacity (i.e., effective reactivity), and the results will identify the defect-based doping mechanisms for p-oxides. The information obtained from these investigations will be carefully correlated with TFT and CMOS device performance in order to understand the relations between synthesis, composition, material properties and device characteristics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:几十年来,硅金属氧化物半导体一直是电子设备的行业标准。然而,新的非硅薄膜半导体金属氧化物近年来已经获得了突出地位。它们是用于电子设备,特别是下一代显示器的有前途的新技术。氧化物电子具有高载流子迁移率,使它们能够有效地传导电流,并且可以在低温下制造。这使得它们与柔性电子产品兼容。掺杂半导体是n型或p型,这取决于大多数电荷载流子是电子还是空穴。绝大多数薄膜氧化物半导体是n型的,这限制了它们在单极器件中的应用。使用互补金属氧化物半导体(CMOS)技术开发更复杂的电路需要p型和n型器件。该项目的目标是解决阻碍实现高性能p型和n型氧化物半导体的科学问题。这反过来将使低温处理的灵活CMOS反相器和其他电路的开发成为可能。基本的器件物理以及热力学和动力学考虑是实现氧化物的原位合成和CMOS器件制造的关键组成部分。基础材料加工和设备制造的结合在贝勒大学的课堂内外产生了教育影响。低成本金属氧化物技术是电子材料和器件本科课程中原型制造实验室的理想选择。PI与当地行业之间的紧密联系将进一步提高学生专业培训经验的价值。该项目还包括对当地学校的推广,例如面向初中和高中学生的年度德克萨斯州中部科学和工程博览会。技术:最近开发的几种宽带隙氧化物半导体和基本薄膜晶体管(TFT)结构的制造已经引起了人们对柔性电子和高性能TFT应用的关注。 然而,这些氧化物TFT器件的研究工作目前限于n型氧化物TFT。 最近,有前途的p型氧化物的出现提供了机会,探索在氧化物基互补金属氧化物半导体(CMOS)器件的应用。 可再生p型氧化物半导体及其TFT器件的发展将大大加速柔性电子产品的发展,并将开创新氧化物CMOS器件的发展。简单的二元氧化物(SnOx,1x 2)由于可能形成ns 2杂化轨道而成为p型半导体的新兴候选者。 然而,由于SnO 2(n型)的形成和金属Sn的沉淀,p型SnOx的生长条件被认为是狭窄的。 这项研究表明,可重复的方法来合成p型氧化物半导体在低温(T)低于200?C. 低T(200?C)p型SnOx(1x 2)的原位合成是与SnO 2接触的金属化材料的热力学不稳定性的结果。 对于n型In(Ga)ZnO,相同的金属化材料必须是热稳定的。 这种独特的原位方法为合成p型氧化物的复杂挑战提供了简单的解决方案:p型和n型氧化物TFT的金属化,以及低T退火工艺(提高TFT性能所必需的)。因此,氧化物CMOS器件将在原位制造。该项目还包含控制空穴载流子密度的策略。高压氧化的使用使载流子密度与氧逸度(即,有效反应性),并且结果将识别p-氧化物的基于缺陷的掺杂机制。 从这些研究中获得的信息将仔细与TFT和CMOS器件性能相关联,以了解合成,成分,材料特性和器件特性之间的关系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sunghwan Lee其他文献

Amorphous structure and electrical performance of low-temperature annealed amorphous indium zinc oxide transparent thin film transistors
低温退火非晶氧化铟锌透明薄膜晶体管的非晶结构与电性能
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunghwan Lee;Brian Bierig;D. Paine
  • 通讯作者:
    D. Paine
NSF REU entrepreneurially minded applied energy program evaluation: traditional delivery versus alternative delivery (implemented during COVID-19)
NSF REU 具有创业精神的应用能源计划评估:传统交付与替代交付(在 COVID-19 期间实施)
Thin Film Oxy-Apatite Anodes for Solid Oxide Fuel Cells
用于固体氧化物燃料电池的薄膜氧磷灰石阳极
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunghwan Lee;Xiaofei Guan;S. Ramanathan
  • 通讯作者:
    S. Ramanathan
Metallization selection and the performance of amorphous In-Zn-O thin film transistors
非晶In-Zn-O薄膜晶体管的金属化选择及性能
  • DOI:
    10.1063/1.4885118
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Sunghwan Lee;D. Paine
  • 通讯作者:
    D. Paine
The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors
金属化接触电阻对长沟道未退火非晶In-Zn-O薄膜晶体管场效应迁移率测量的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunghwan Lee;Hongsik Park;D. Paine
  • 通讯作者:
    D. Paine

Sunghwan Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sunghwan Lee', 18)}}的其他基金

I-Corps Team: Sustainable Battery Electrode Manufacturing with High Active Material Loading
I-Corps 团队:高活性材料负载的可持续电池电极制造
  • 批准号:
    2236020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: An Engineering Design Approach for the Tandem Catalysis of Carbon Dioxide (CO2) using Nanoporous Bi-layer Structures
RUI:协作研究:利用纳米多孔双层结构串联二氧化碳(CO2)催化的工程设计方法
  • 批准号:
    2207302
  • 财政年份:
    2022
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Standard Grant
P-type Oxides for CMOS Devices: Thermodynamics-based In-situ Synthesis and In-Situ Integration
用于 CMOS 器件的 P 型氧化物:基于热力学的原位合成和原位集成
  • 批准号:
    1931088
  • 财政年份:
    2019
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant

相似国自然基金

偶联剂辅助的“NPs@Oxides”类核-壳结构跨尺度自组装及其甲烷干气重整性能研究
  • 批准号:
    21773069
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
  • 批准号:
    2340234
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Bronzes: Mixed-Valence Hybrid Metal Oxides as a Tunable Material Platform
职业:混合青铜:混合价混合金属氧化物作为可调材料平台
  • 批准号:
    2338086
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant
CAREER: Timely Estimation of Nitrogen Oxides Emissions for Improved Monitoring and Simulation of Atmospheric Chemical Processes
职业:及时估算氮氧化物排放,以改进大气化学过程的监测和模拟
  • 批准号:
    2338758
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
  • 批准号:
    2904783
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Studentship
Quantifying Natural and Anthropogenic Influences on Nitrogen Oxides Emissions and Chemistry
量化自然和人为对氮氧化物排放和化学的影响
  • 批准号:
    2404581
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Standard Grant
Exploration of spin topology, emergent inductance, and electron correlations in transition metal oxides
过渡金属氧化物中自旋拓扑、涌现电感和电子相关性的探索
  • 批准号:
    22KF0124
  • 财政年份:
    2023
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Post Transition Metal Oxides for Optoelectronic Applications (PRAETORIAN)
用于光电应用的后过渡金属氧化物 (PRAETORIAN)
  • 批准号:
    EP/Y019504/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Research Grant
In-situ and ex-situ STEM study of non-conventional line defects in perovskite oxides
钙钛矿氧化物中非常规线缺陷的原位和异位 STEM 研究
  • 批准号:
    2309431
  • 财政年份:
    2023
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant
Understanding Transformation Superplasticity, High Temperature Deformation and Manufacturing of Entropy Stabilized Oxides
了解相变超塑性、高温变形和熵稳定氧化物的制造
  • 批准号:
    2414950
  • 财政年份:
    2023
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Standard Grant
AGS-PRF: Novel Detection of Accelerated Emissions of Nitrogen Oxides Following High Latitude Peat Fires
AGS-PRF:高纬度泥炭火灾后氮氧化物加速排放的新检测
  • 批准号:
    2318739
  • 财政年份:
    2023
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了