P-type Oxides for CMOS Devices: Thermodynamics-based In-situ Synthesis and In-Situ Integration

用于 CMOS 器件的 P 型氧化物:基于热力学的原位合成和原位集成

基本信息

  • 批准号:
    1808168
  • 负责人:
  • 金额:
    $ 25.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Nontechnical:Silicon metal oxide semiconductors have been the industry standard in electronic devices for decades. However, new non-silicon thin film semiconducting metal oxides have gained prominence in recent years. They are a promising new technology for electronic devices, particularly next generation displays. Oxide electronics have high carrier mobility, allowing them to conduct current efficiently, and can be fabricated at low-temperatures. This makes them compatible with flexible electronics. Doped semiconductors are n-type or p-type, depending upon if the majority charge carriers are electrons or holes. The vast majority of thin film oxide semiconductors are n-type, which limits their applications to unipolar devices. The development of more sophisticated circuits using complementary metal-oxide-semiconductor (CMOS) technology requires both p- and n-type devices. The goal of this project is to resolve the scientific questions that prevent the realization of high performance p- and n-type oxide semiconductors. This in turn will enable the development of low-temperature processed flexible CMOS inverters and other circuits. Fundamental device physics together with thermodynamic and kinetic considerations are the key components to enable in-situ synthesis of the oxides and fabrication of CMOS devices. The combination of fundamental materials processing and device fabrication has educational impacts in and out of the classroom at Baylor University. Low cost metal oxide technology is ideal for a prototype fabrication lab in an undergraduate course on electronic materials and devices. Strong connections between the PI and local industry will further enhance the value of the professional training experience for students. The project also includes outreach to local schools, such as The Annual Central Texas Science and Engineering Fair for middle and high school students.Technical:The recent development of several wide bandgap oxide semiconductors and the fabrication of basic thin film transistor (TFT) structures have garnered attention for applications in flexible electronics and high performance TFTs. However, research efforts of these oxide TFT devices are currently limited to n-type oxide TFTs. Recently, promising p-type oxides have emerged providing the opportunity to explore applications in oxide-based complementary metal-oxide-semiconductor (CMOS) devices. The development of reproducible p-type oxide semiconductors and their TFT devices will greatly accelerate flexible electronics and will pioneer the development of new oxide CMOS devices. A simple binary oxide (SnOx, 1x2) is an emerging candidate for a p-type semiconductor due to the possible formation of ns2 hybrid orbitals. However, the growth conditions for p-type SnOx are believed to be narrow, due to the formation of SnO2 (n-type) and the precipitation of metallic Sn. This research suggests reproducible approaches to synthesize p-type oxide semiconductors at low temperatures (T) below 200 ?C. Low-T (200 ?C) in-situ synthesis of p-type SnOx (1x2) is a consequence of the thermodynamic instability of the metallization material in contact with SnO2. The same metallization material must be thermodynamically stable with n-type In(Ga)ZnO. This unique in-situ approach offers simple solutions to the complex challenges of synthesizing p-type oxides: the metallization of both p- and n-type oxide TFTs, and the low-T annealing processes (necessary for improving TFT performance). As a result, oxide CMOS devices will be fabricated in situ. This project also contains strategies for controlling hole carrier densities. The use of high pressure oxidation relates carrier density to the oxygen fugacity (i.e., effective reactivity), and the results will identify the defect-based doping mechanisms for p-oxides. The information obtained from these investigations will be carefully correlated with TFT and CMOS device performance in order to understand the relations between synthesis, composition, material properties and device characteristics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性:数十年来,硅金属氧化物半导体一直是电子设备的行业标准。然而,近年来,新的非硅胶薄膜半导体金属氧化物已获得突出。它们是电子设备,尤其是下一代展示的有前途的新技术。氧化物电子具有较高的载体迁移率,使其能够有效地进行电流,并且可以在低温下制造。这使它们与灵活的电子设备兼容。掺杂的半导体是N型或P型,具体取决于多数托架是电子还是孔。绝大多数薄膜氧化物半导体是N型,它将其应用限制在单极器件中。使用互补的金属氧化物 - 氧化流极导器(CMOS)技术开发更复杂的电路需要P-和N型设备。该项目的目的是解决阻止高性能P-和N型氧化物半导体的科学问题。反过来,这将使低温加工的柔性CMOS逆变器和其他电路的发展。基本装置物理学以及热力学和动力学考虑因素是实现氧化物的原位合成和CMOS设备制造的关键组成部分。基本材料处理和设备制造的结合在贝勒大学的教室内外具有教育影响。低成本的金属氧化物技术是在电子材料和设备的本科课程中制造原型制造实验室的理想选择。 PI与本地行业之间的牢固联系将进一步增强学生对学生的专业培训经验的价值。该项目还包括向当地学校的宣传,例如年度德克萨斯州中部科学和工程专业的中学生。技术:技术:最近的几个宽带量氧化物氧化物半导体的开发以及基本薄膜晶体管(TFT)结构的制造引起了针对灵活的电子和高性能TFT的应用。 但是,这些氧化物TFT设备的研究工作限于N型氧化物TFT。 最近,有希望的P型氧化物已经出现了,为探索基于氧化物互补的金属氧化物 - 氧化物 - 氧化物 - 氧化物 - 氧化物(CMOS)设备的应用提供了机会。 可再现的P型氧化物半导体及其TFT设备的开发将极大地加速柔性电子设备,并将开发新的氧化物CMOS设备的开发。简单的二元氧化物(Snox,1x2)是由于NS2杂交轨道的形成,是P型半导体的新兴候选者。 但是,由于SNO2(N型)的形成和金属SN的沉淀,据信P型SNOX的生长条件被认为是狭窄的。 这项研究表明,在低温低于200?c的低温(t)下合成P型氧化物半导体的可再现方法。 低-T(200?c)p型SNOX(1x2)的原位合成是与SNO2接触的金属化材料的热力学不稳定性的结果。 相同的金属化材料必须在(GA)ZnO中使用N型在热力学上稳定。 这种独特的原位方法为合成P型氧化物的复杂挑战提供了简单的解决方案:P-和N型氧化物TFT的金属化以及低T退火过程(用于改善TFT性能所必需的)。结果,将原位制造氧化物CMOS设备。该项目还包含控制孔载体密度的策略。高压氧化的使用将载体密度与氧气散热性(即有效反应性)联系起来,结果将确定基于缺陷的P-氧化物的掺杂机制。 从这些调查中获得的信息将与TFT和CMOS设备的性能仔细关联,以了解合成,组成,材料特性和设备特征之间的关系。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来通过评估来支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sunghwan Lee其他文献

Amorphous structure and electrical performance of low-temperature annealed amorphous indium zinc oxide transparent thin film transistors
低温退火非晶氧化铟锌透明薄膜晶体管的非晶结构与电性能
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunghwan Lee;Brian Bierig;D. Paine
  • 通讯作者:
    D. Paine
NSF REU entrepreneurially minded applied energy program evaluation: traditional delivery versus alternative delivery (implemented during COVID-19)
NSF REU 具有创业精神的应用能源计划评估:传统交付与替代交付(在 COVID-19 期间实施)
Thin Film Oxy-Apatite Anodes for Solid Oxide Fuel Cells
用于固体氧化物燃料电池的薄膜氧磷灰石阳极
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunghwan Lee;Xiaofei Guan;S. Ramanathan
  • 通讯作者:
    S. Ramanathan
The effect of metallization contact resistance on the measurement of the field effect mobility of long-channel unannealed amorphous In–Zn–O thin film transistors
金属化接触电阻对长沟道未退火非晶In-Zn-O薄膜晶体管场效应迁移率测量的影响
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sunghwan Lee;Hongsik Park;D. Paine
  • 通讯作者:
    D. Paine
Enhanced doping and structure relaxation of unsubstituted polythiophene through oxidative chemical vapor deposition and mild plasma treatment
通过氧化化学气相沉积和温和等离子体处理增强未取代聚噻吩的掺杂和结构弛豫
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxuan Zhang;Mingyuan Liu;Hyo;Byung;Jinwook Baek;Kwangsoo No;H. Song;Sunghwan Lee
  • 通讯作者:
    Sunghwan Lee

Sunghwan Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sunghwan Lee', 18)}}的其他基金

I-Corps Team: Sustainable Battery Electrode Manufacturing with High Active Material Loading
I-Corps 团队:高活性材料负载的可持续电池电极制造
  • 批准号:
    2236020
  • 财政年份:
    2022
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Standard Grant
RUI: Collaborative Research: An Engineering Design Approach for the Tandem Catalysis of Carbon Dioxide (CO2) using Nanoporous Bi-layer Structures
RUI:协作研究:利用纳米多孔双层结构串联二氧化碳(CO2)催化的工程设计方法
  • 批准号:
    2207302
  • 财政年份:
    2022
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Standard Grant
P-type Oxides for CMOS Devices: Thermodynamics-based In-situ Synthesis and In-Situ Integration
用于 CMOS 器件的 P 型氧化物:基于热力学的原位合成和原位集成
  • 批准号:
    1931088
  • 财政年份:
    2019
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于CMOS APS的星敏感器空间辐射损伤传递机制研究
  • 批准号:
    11805269
  • 批准年份:
    2018
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
与CMOS工艺和电压兼容的CMOS-MEMS数字微镜阵列
  • 批准号:
    61874127
  • 批准年份:
    2018
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
融合石墨烯光电器件的体硅CMOS单片集成光互联
  • 批准号:
    61674055
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
免加热低功耗氧化锌纳米气体传感器的制备与CMOS单片集成研究
  • 批准号:
    61504087
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
CMOS毫米波注入锁定锁相环倍频芯片关键技术研究
  • 批准号:
    U1531124
  • 批准年份:
    2015
  • 资助金额:
    47.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
  • 批准号:
    2340234
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant
CAREER: Hybrid Bronzes: Mixed-Valence Hybrid Metal Oxides as a Tunable Material Platform
职业:混合青铜:混合价混合金属氧化物作为可调材料平台
  • 批准号:
    2338086
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant
CAREER: Timely Estimation of Nitrogen Oxides Emissions for Improved Monitoring and Simulation of Atmospheric Chemical Processes
职业:及时估算氮氧化物排放,以改进大气化学过程的监测和模拟
  • 批准号:
    2338758
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Continuing Grant
Manufacturing conductive oxides as catalyst support for energy efficient production of hydrogen and ammonia
制造导电氧化物作为氢和氨节能生产的催化剂载体
  • 批准号:
    2904783
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Studentship
Quantifying Natural and Anthropogenic Influences on Nitrogen Oxides Emissions and Chemistry
量化自然和人为对氮氧化物排放和化学的影响
  • 批准号:
    2404581
  • 财政年份:
    2024
  • 资助金额:
    $ 25.23万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了