Educating Generative Designers in Engineering

教育工程领域的生成设计师

基本信息

  • 批准号:
    2207408
  • 负责人:
  • 金额:
    $ 218.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2024-09-30
  • 项目状态:
    已结题

项目摘要

With support from NSF's Accelerating Discovery program, this project aims to re-envision undergraduate engineering education to include generative design. Generative design is a transformative design technology that uses open-ended artificial intelligence algorithms to arrive at solutions for engineering problems. Generative design software can be freed from preconceived ideas or past solutions. As a result, it allows exploration of a wider variety of potential solutions, with the goal of arriving at an optimal solution in partnership with the human engineer. The proposed project will support the development of open-source educational tools for teaching and learning generative design. These tools will be based on existing computer-assisted design and engineering software, and will include a set of project modules to guide students through authentic design problems. The software and associated design problems will be pilot tested by students at thirteen institutions, including community colleges, Historically Black Colleges and Universities, liberal arts colleges, and public universities. Information from these pilots will be used iteratively to refine the software and teaching approach. This project represents a novel application of artificial intelligence to engineering that could augment the creativity and productivity of the engineering workforce of the future. The overall goal of this project is to facilitate the teaching and learning of generative design at the undergraduate level. To accomplish this goal, the University of Arkansas, the University of Illinois at Urbana-Champaign, Oregon State University, and the Concord Consortium will collaborate to define, implement, and disseminate generative design tools and projects for use in undergraduate courses. Research questions from three perspectives will drive the project: 1) Theoretical perspective: What are the essential elements of generative design thinking that students must acquire so they can work effectively at the human-technology frontier in engineering? 2) Practical perspective: To what extent and in what ways can the curriculum and materials support the learning of generative design as indicated by students' gains in generative design thinking? and 3) Affective perspective: To what extent and in what ways can artificial intelligence affect the professional formation of engineers as indicated by the changes of students' interest and self-efficacy in engineering? To answer these questions, interdisciplinary research that integrates the perspectives and knowledge in engineering design, computer science, learning science, and workforce development will be conducted. The project will involve more than 1,000 students at 13 institutions around the country. The research will include data from demographic surveys, questionnaires, self-efficacy measures, design reports, screencast videos, classroom observations, and participant interviews. The materials developed by the project will be open source, including an open-source tool for teaching and learning generative design and a set of project-based learning modules that guide use of the tool to solve authentic design problems in architectural engineering and energy engineering. The products of this project are expected to equip students with essential skills and mindsets needed to master using artificial intelligence approaches in contemporary engineering practices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在NSF加速发现计划的支持下,该项目旨在重新构想本科工程教育,将生成式设计纳入其中。 生成式设计是一种变革性的设计技术,它使用开放式人工智能算法来解决工程问题。 生成式设计软件可以从先入为主的想法或过去的解决方案中解放出来。 因此,它允许探索更广泛的潜在解决方案,目标是与人类工程师合作达成最佳解决方案。 拟议项目将支持开发用于教学和学习生成设计的开源教育工具。 这些工具将基于现有的计算机辅助设计和工程软件,并将包括一套项目模块,以指导学生通过真实的设计问题。 该软件和相关的设计问题将在13个机构,包括社区学院,历史上的黑人学院和大学,文科学院和公立大学的学生进行试点测试。 来自这些试点的信息将被反复使用,以完善软件和教学方法。 该项目代表了人工智能在工程中的一种新应用,可以提高未来工程人员的创造力和生产力。 这个项目的总体目标是促进本科阶段生成设计的教学和学习。 为了实现这一目标,阿肯色州大学、伊利诺伊大学厄巴纳-香槟分校、俄勒冈州州立大学和康科德联盟将合作定义、实施和传播用于本科课程的生成设计工具和项目。 从三个角度的研究问题将推动该项目:1)理论的角度:什么是生成设计思维的基本要素,学生必须获得,使他们能够有效地在工程中的人类技术前沿工作?2)实用视角:从学生在生成式设计思维方面的收获来看,课程和材料能在多大程度上和以何种方式支持生成式设计的学习?(3)情感视角:从学生对工程的兴趣和自我效能感的变化看,人工智能在多大程度上、以何种方式影响工程师的专业形成? 为了回答这些问题,将进行整合工程设计,计算机科学,学习科学和劳动力发展的观点和知识的跨学科研究。 该项目将涉及全国13个机构的1 000多名学生。 该研究将包括来自人口统计调查,问卷调查,自我效能测量,设计报告,屏幕播放视频,课堂观察和参与者访谈的数据。 该项目开发的材料将是开源的,包括一个用于教学和学习生成设计的开源工具,以及一套基于项目的学习模块,指导使用该工具解决建筑工程和能源工程中的真实设计问题。 该项目的成果有望使学生掌握在当代工程实践中使用人工智能方法所需的基本技能和心态。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design representation for performance evaluation of 3D shapes in structure-aware generative design
  • DOI:
    10.1017/dsj.2023.25
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Xingang Li;Charles Xie;Z. Sha
  • 通讯作者:
    Xingang Li;Charles Xie;Z. Sha
Beyond Solar Cookers: Modeling and Designing Concentrated Solar Power as Engineering Projects in Physics Classrooms
超越太阳能炊具:将聚光太阳能建模和设计为物理课堂的工程项目
  • DOI:
    10.1119/5.0090548
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xie, Charles
  • 通讯作者:
    Xie, Charles
Deep Learning of Cross-Modal Tasks for Conceptual Design of Engineered Products: A Review
Human-Centered Generative Design Framework: An Early Design Framework to Support Concept Creation and Evaluation
以人为本的生成设计框架:支持概念创建和评估的早期设计框架
Exploring Generative Design Thinking for Engineering Design and Design Education
探索工程设计与设计教育的生成设计思维
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Li, Xingang;Demirel, H. Onan;Goldstein, Molly H.;Sha, Zhenghui
  • 通讯作者:
    Sha, Zhenghui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenghui Sha其他文献

Print As a Dance Duet: Communication Strategies for Collision-Free Arm-Arm Coordination in Cooperative 3D Printing
打印如舞蹈二重奏:协作 3D 打印中无碰撞手臂协调的通信策略
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ronnie F. P. Stone;Wenchao Zhou;E. Akleman;Vinayak R. Krishnamurthy;Zhenghui Sha
  • 通讯作者:
    Zhenghui Sha
Multi-Robot Path Planning for Cooperative 3D Printing
协作 3D 打印的多机器人路径规划
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saivipulteja Elagandula;Laxmi Poudel;Zhenghui Sha;Wenchao Zhou
  • 通讯作者:
    Wenchao Zhou
Predicting product co-consideration and market competitions for technology-driven product design: a network-based approach
预测技术驱动的产品设计的产品共同考虑和市场竞争:基于网络的方法
  • DOI:
    10.1017/dsj.2018.4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mingxian Wang;Zhenghui Sha;Yun Huang;N. Contractor;Yan Fu;Wei Chen
  • 通讯作者:
    Wei Chen
Modeling product co-consideration relations: A comparative study of two network models
产品共考虑关系建模:两种网络模型的比较研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenghui Sha;Mingxian Wang;Yun Huang;N. Contractor;Yan Fu;Wei Chen
  • 通讯作者:
    Wei Chen
The Second Decade of the Materials Genome Initiative
材料基因组计划的第二个十年
  • DOI:
    10.1007/s11837-021-05008-y
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xingang Li;Charles Xie;Zhenghui Sha
  • 通讯作者:
    Zhenghui Sha

Zhenghui Sha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenghui Sha', 18)}}的其他基金

Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2321463
  • 财政年份:
    2023
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2203080
  • 财政年份:
    2021
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2005665
  • 财政年份:
    2020
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Standard Grant
Educating Generative Designers in Engineering
教育工程领域的生成设计师
  • 批准号:
    1918847
  • 财政年份:
    2019
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Standard Grant
EAGER: A Fine-Grained Data-Driven Approach to Studying Sequential Decision-Making in Engineering Systems Design
EAGER:一种研究工程系统设计中顺序决策的细粒度数据驱动方法
  • 批准号:
    1842588
  • 财政年份:
    2018
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Standard Grant

相似海外基金

Experiment-numerical-virtual Generative Design for Nondeterministic Impacts
非确定性影响的实验数值虚拟生成设计
  • 批准号:
    DP240102559
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Discovery Projects
Developing a Census Based Generative Geodemographic Classification System
开发基于人口普查的生成地理人口分类系统
  • 批准号:
    ES/Z50273X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Research Grant
AI HUB IN GENERATIVE MODELS
生成模型中的 AI 中心
  • 批准号:
    EP/Y028805/1
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Research Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Standard Grant
Feedback Literacy and AI Ethics: Leveraging Auto-Peer for Productive Interaction with Generative AI Tools in L2 Writing Education in Japan
反馈素养和人工智能道德:在日本二语写作教育中利用 Auto-Peer 与生成式人工智能工具进行富有成效的互动
  • 批准号:
    24K04103
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SeparateSpace: Leveraging generative AI to help separating families who are underserved or excluded by the way family law support is currently delivered.
SeparateSpace:利用生成式人工智能来帮助分离那些因目前提供家庭法支持的方式而服务不足或被排除在外的家庭。
  • 批准号:
    10100497
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Collaborative R&D
Assessments for writing with generative artificial intelligence
使用生成人工智能进行写作评估
  • 批准号:
    DP240100069
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Discovery Projects
AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
  • 批准号:
    24K02996
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Toward Trustworthy Generative AI by Integrating Large Language Model with Knowledge Graph
通过将大型语言模型与知识图相结合,迈向可信赖的生成式人工智能
  • 批准号:
    24K20834
  • 财政年份:
    2024
  • 资助金额:
    $ 218.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了