EAGER: A Fine-Grained Data-Driven Approach to Studying Sequential Decision-Making in Engineering Systems Design

EAGER:一种研究工程系统设计中顺序决策的细粒度数据驱动方法

基本信息

  • 批准号:
    1842588
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) grant supports fundamental research into sequential decision making in engineering systems design. Each decision an engineer makes during a design process impacts the direction and outcomes of the project. An improved understanding this process can lead to better guidelines and support tools for engineering designers and, in turn, improved engineered systems and overall industrial competitiveness. However, an important challenge in studying these processes is the difficulty of obtaining fine-grained empirical data of engineering designers in action. This project will create and demonstrate a research platform for the large-scale data acquisition and analysis of decision processes in engineering systems design. This new research approach provides a high-resolution lens for probing into design thinking and will enable researchers to identify design thinking patterns and strategies that are not evident through other observational techniques. This can lead to valuable insights that have a major impact on engineering design education, practitioner strategies, and engineering tools. Specific outcomes of this project include the creation of the open-source fine-grained data-driven research platform, dissemination of the platform to other researchers, and demonstration of its use to investigate engineering design thinking through empirical studies of systems thinking and sequential decision making in the design of solar energy systems. The primary objective of this high-risk high-reward project is to create and demonstrate a research approach centered on the acquisition and analysis of fine-grained design activity data for design research. The approach is based on an open-source research experiment platform extended from an existing computer-aided design (CAD) software, Energy3D, for renewable energy systems design. This project will 1) extend Energy3D to incorporate functionality required for a research platform, 2) demonstrate use of the new research platform to support the acquisition of fine-grained data from real-world design exercises, and 3) disseminate the platform within the engineering design research community through publications and tutorials. The research study will highlight how fine-grained data enables new research directions on sequential decision-making and system thinking, two fundamental elements of engineering design thinking. Specifically, the approach combines Markov decision process and deep neural networks with data from human-subject experiments to establish decision process models. A principal risk of this project is that there may be limits to the conclusions researchers can draw based primarily on the observed actions of designers. However, the potential reward is deep insight into designers' sequential decision-making and its interaction with systems thinking. This is expect to lead to recommendations for improved engineering design strategy and transformative next-generation design tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项早期概念探索性研究(AGUGER)拨款支持工程系统设计中顺序决策的基础研究。工程师在设计过程中所做的每一个决定都会影响项目的方向和结果。更好地理解这一过程可以为工程设计人员带来更好的指导方针和支持工具,进而改善工程系统和整体工业竞争力。然而,研究这些过程的一个重要挑战是难以获得实际工程设计人员的细粒度经验数据。该项目将为工程系统设计中的大规模数据采集和决策过程分析创建和演示一个研究平台。这种新的研究方法为探索设计思维提供了一个高分辨率的镜头,并将使研究人员能够识别通过其他观察技术不明显的设计思维模式和策略。这可以带来有价值的见解,对工程设计教育、实践者战略和工程工具产生重大影响。该项目的具体成果包括创建了开源的细粒度数据驱动研究平台,将该平台传播给其他研究人员,并通过对太阳能系统设计中的系统思维和顺序决策的实证研究,展示了该平台用于调查工程设计思维。这个高风险高回报项目的主要目标是创建和演示一种研究方法,该方法以获取和分析用于设计研究的细粒度设计活动数据为中心。这种方法是基于一个开源的研究实验平台,该平台是从现有的计算机辅助设计(CAD)软件Energy3D扩展而来的,用于可再生能源系统的设计。该项目将1)扩展Energy3D以纳入研究平台所需的功能,2)演示新研究平台的使用,以支持从现实世界设计练习中获取细粒度数据,3)通过出版物和教程在工程设计研究社区内传播该平台。这项研究研究将突出细粒度数据如何使顺序决策和系统思维的新研究方向成为可能,这是工程设计思维的两个基本要素。具体地说,该方法将马尔可夫决策过程和深度神经网络与人体实验数据相结合建立决策过程模型。这个项目的一个主要风险是,研究人员主要根据设计师观察到的行为得出的结论可能会受到限制。然而,潜在的回报是对设计师的顺序决策及其与系统思维的互动的深刻洞察。这个奖项反映了NSF的法定使命,通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为是值得支持的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing Instructional Design Agents to Support Novice and K-12 Design Education
开发教学设计代理以支持新手和 K-12 设计教育
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schimpf, Corey;Huang, Xudong;Xie, Charles;Sha, Zhenghui;Massicotte, Joyce
  • 通讯作者:
    Massicotte, Joyce
Automatic Clustering of Sequential Design Behaviors
顺序设计行为的自动聚类
Integrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition
  • DOI:
    10.1115/1.4048222
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. E. Bayrak;Zhenghui Sha
  • 通讯作者:
    A. E. Bayrak;Zhenghui Sha
Design Embedding: Representation Learning of Design Thinking to Cluster Design Behaviors
MODELLING AND PROFILING STUDENT DESIGNERS’ COGNITIVE COMPETENCIES IN COMPUTER-AIDED DESIGN
对学生设计师的计算机辅助设计认知能力进行建模和分析
  • DOI:
    10.1017/pds.2021.477
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clay, John;Li, Xingang;Rahman, Molla Hafizur;Zabelina, Darya;Xie, Charles;Sha, Zhenghui
  • 通讯作者:
    Sha, Zhenghui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenghui Sha其他文献

Print As a Dance Duet: Communication Strategies for Collision-Free Arm-Arm Coordination in Cooperative 3D Printing
打印如舞蹈二重奏:协作 3D 打印中无碰撞手臂协调的通信策略
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ronnie F. P. Stone;Wenchao Zhou;E. Akleman;Vinayak R. Krishnamurthy;Zhenghui Sha
  • 通讯作者:
    Zhenghui Sha
Multi-Robot Path Planning for Cooperative 3D Printing
协作 3D 打印的多机器人路径规划
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saivipulteja Elagandula;Laxmi Poudel;Zhenghui Sha;Wenchao Zhou
  • 通讯作者:
    Wenchao Zhou
Predicting product co-consideration and market competitions for technology-driven product design: a network-based approach
预测技术驱动的产品设计的产品共同考虑和市场竞争:基于网络的方法
  • DOI:
    10.1017/dsj.2018.4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mingxian Wang;Zhenghui Sha;Yun Huang;N. Contractor;Yan Fu;Wei Chen
  • 通讯作者:
    Wei Chen
Modeling product co-consideration relations: A comparative study of two network models
产品共考虑关系建模:两种网络模型的比较研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenghui Sha;Mingxian Wang;Yun Huang;N. Contractor;Yan Fu;Wei Chen
  • 通讯作者:
    Wei Chen
The Second Decade of the Materials Genome Initiative
材料基因组计划的第二个十年
  • DOI:
    10.1007/s11837-021-05008-y
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xingang Li;Charles Xie;Zhenghui Sha
  • 通讯作者:
    Zhenghui Sha

Zhenghui Sha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenghui Sha', 18)}}的其他基金

Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2321463
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Educating Generative Designers in Engineering
教育工程领域的生成设计师
  • 批准号:
    2207408
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2203080
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2005665
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Educating Generative Designers in Engineering
教育工程领域的生成设计师
  • 批准号:
    1918847
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似海外基金

AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
  • 批准号:
    24K02996
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
  • 批准号:
    10107090
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Collaborative R&D
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
  • 批准号:
    2327480
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Distances and matchings under the lens of fine-grained complexity
职业:细粒度复杂性镜头下的距离和匹配
  • 批准号:
    2337901
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SHF: Small: Domain-Specific FPGAs to Accelerate Unrolled DNNs with Fine-Grained Unstructured Sparsity and Mixed Precision
SHF:小型:特定领域 FPGA 加速具有细粒度非结构化稀疏性和混合精度的展开 DNN
  • 批准号:
    2303626
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Towards Real-Time Fine-Grained Tracking in Distributed Large-Scale RF Tag Systems
实现分布式大规模射频标签系统中的实时细粒度跟踪
  • 批准号:
    2225337
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Towards sensing and understanding fine-grained body postures in daily life using intelligent wearables with acoustic sensing
职业:利用具有声学传感功能的智能可穿戴设备来感知和理解日常生活中细粒度的身体姿势
  • 批准号:
    2239569
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Efficacy and Durability of Microbially Induced Desaturation to Mitigate Liquefaction in Fine-grained Soils
合作研究:微生物诱导去饱和缓解细粒土壤液化的功效和持久性
  • 批准号:
    2242227
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
IMR: MM-1C: Fine-grained Network Monitoring via Software Imputation
IMR:MM-1C:通过软件插补进行细粒度网络监控
  • 批准号:
    2319442
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了