EAGER: A Fine-Grained Data-Driven Approach to Studying Sequential Decision-Making in Engineering Systems Design

EAGER:一种研究工程系统设计中顺序决策的细粒度数据驱动方法

基本信息

  • 批准号:
    1842588
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) grant supports fundamental research into sequential decision making in engineering systems design. Each decision an engineer makes during a design process impacts the direction and outcomes of the project. An improved understanding this process can lead to better guidelines and support tools for engineering designers and, in turn, improved engineered systems and overall industrial competitiveness. However, an important challenge in studying these processes is the difficulty of obtaining fine-grained empirical data of engineering designers in action. This project will create and demonstrate a research platform for the large-scale data acquisition and analysis of decision processes in engineering systems design. This new research approach provides a high-resolution lens for probing into design thinking and will enable researchers to identify design thinking patterns and strategies that are not evident through other observational techniques. This can lead to valuable insights that have a major impact on engineering design education, practitioner strategies, and engineering tools. Specific outcomes of this project include the creation of the open-source fine-grained data-driven research platform, dissemination of the platform to other researchers, and demonstration of its use to investigate engineering design thinking through empirical studies of systems thinking and sequential decision making in the design of solar energy systems. The primary objective of this high-risk high-reward project is to create and demonstrate a research approach centered on the acquisition and analysis of fine-grained design activity data for design research. The approach is based on an open-source research experiment platform extended from an existing computer-aided design (CAD) software, Energy3D, for renewable energy systems design. This project will 1) extend Energy3D to incorporate functionality required for a research platform, 2) demonstrate use of the new research platform to support the acquisition of fine-grained data from real-world design exercises, and 3) disseminate the platform within the engineering design research community through publications and tutorials. The research study will highlight how fine-grained data enables new research directions on sequential decision-making and system thinking, two fundamental elements of engineering design thinking. Specifically, the approach combines Markov decision process and deep neural networks with data from human-subject experiments to establish decision process models. A principal risk of this project is that there may be limits to the conclusions researchers can draw based primarily on the observed actions of designers. However, the potential reward is deep insight into designers' sequential decision-making and its interaction with systems thinking. This is expect to lead to recommendations for improved engineering design strategy and transformative next-generation design tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项早期概念授予探索性研究(急切)赠款支持工程系统设计中的顺序决策的基本研究。工程师在设计过程中做出的每个决定都会影响项目的方向和结果。改进的理解这一过程可以为工程设计师提供更好的准则和支持工具,进而改善工程系统和整体工业竞争力。但是,研究这些过程的一个重要挑战是难以获得行动中的工程设计师的细粒度经验数据。该项目将创建并展示一个研究平台,用于对工程系统设计中决策过程进行大规模数据获取和分析。这种新的研究方法提供了一种高分辨率的镜头,用于探测设计思维,并将使研究人员能够识别出其他观察技术并不明显的设计思维模式和策略。这可能会导致有价值的见解,这些见解对工程设计教育,从业者策略和工程工具产生重大影响。该项目的具体结果包括创建开源良好的数据驱动的研究平台,将平台传播给其他研究人员,以及通过对太阳能系统设计中系统思维和顺序决策进行经验研究来研究工程设计思维的用途。这个高风险高回报项目的主要目的是创建并展示一种研究方法,该研究方法以对设计研究的精细颗粒设计活动数据的获取和分析为中心。 该方法基于一个开源研究实验平台,该平台从现有的计算机辅助设计(CAD)软件(Energy3D)扩展到可再生能源系统设计。该项目将1)扩展Energy3D以结合研究平台所需的功能,2)证明使用新的研究平台来支持从现实世界设计练习中获取细粒度数据,以及3)3)通过出版物和教程在工程设计研究社区中传播该平台。该研究将重点介绍细粒度的数据如何实现有关顺序决策和系统思维的新研究指示,这是工程设计思维的两个基本要素。具体而言,该方法将马尔可夫决策过程和深度神经网络与人类受试者实验的数据结合在一起,以建立决策过程模型。该项目的主要风险是,研究人员可以基于观察到的设计师的行动来限制结论。但是,潜在的奖励是对设计师的顺序决策及其与系统思维的互动的深入了解。希望这会导致改进工程设计策略和变革性的下一代设计工具的建议。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响评估标准通过评估来支持的。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing Instructional Design Agents to Support Novice and K-12 Design Education
开发教学设计代理以支持新手和 K-12 设计教育
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schimpf, Corey;Huang, Xudong;Xie, Charles;Sha, Zhenghui;Massicotte, Joyce
  • 通讯作者:
    Massicotte, Joyce
Automatic Clustering of Sequential Design Behaviors
顺序设计行为的自动聚类
Integrating Sequence Learning and Game Theory to Predict Design Decisions Under Competition
  • DOI:
    10.1115/1.4048222
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. E. Bayrak;Zhenghui Sha
  • 通讯作者:
    A. E. Bayrak;Zhenghui Sha
MODELLING AND PROFILING STUDENT DESIGNERS’ COGNITIVE COMPETENCIES IN COMPUTER-AIDED DESIGN
对学生设计师的计算机辅助设计认知能力进行建模和分析
  • DOI:
    10.1017/pds.2021.477
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clay, John;Li, Xingang;Rahman, Molla Hafizur;Zabelina, Darya;Xie, Charles;Sha, Zhenghui
  • 通讯作者:
    Sha, Zhenghui
Predicting Sequential Design Decisions Using the Function-Behavior-Structure Design Process Model and Recurrent Neural Networks
  • DOI:
    10.1115/1.4049971
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    M. H. Rahman;Charles Xie;Zhenghui Sha
  • 通讯作者:
    M. H. Rahman;Charles Xie;Zhenghui Sha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenghui Sha其他文献

Print As a Dance Duet: Communication Strategies for Collision-Free Arm-Arm Coordination in Cooperative 3D Printing
打印如舞蹈二重奏:协作 3D 打印中无碰撞手臂协调的通信策略
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ronnie F. P. Stone;Wenchao Zhou;E. Akleman;Vinayak R. Krishnamurthy;Zhenghui Sha
  • 通讯作者:
    Zhenghui Sha
Multi-Robot Path Planning for Cooperative 3D Printing
协作 3D 打印的多机器人路径规划
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saivipulteja Elagandula;Laxmi Poudel;Zhenghui Sha;Wenchao Zhou
  • 通讯作者:
    Wenchao Zhou
Modeling product co-consideration relations: A comparative study of two network models
产品共考虑关系建模:两种网络模型的比较研究
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhenghui Sha;Mingxian Wang;Yun Huang;N. Contractor;Yan Fu;Wei Chen
  • 通讯作者:
    Wei Chen
Predicting product co-consideration and market competitions for technology-driven product design: a network-based approach
预测技术驱动的产品设计的产品共同考虑和市场竞争:基于网络的方法
  • DOI:
    10.1017/dsj.2018.4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mingxian Wang;Zhenghui Sha;Yun Huang;N. Contractor;Yan Fu;Wei Chen
  • 通讯作者:
    Wei Chen
The Second Decade of the Materials Genome Initiative
材料基因组计划的第二个十年
  • DOI:
    10.1007/s11837-021-05008-y
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xingang Li;Charles Xie;Zhenghui Sha
  • 通讯作者:
    Zhenghui Sha

Zhenghui Sha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenghui Sha', 18)}}的其他基金

Collaborative Research: Design Decisions under Competition at the Edge of Bounded Rationality: Quantification, Models, and Experiments
协作研究:有限理性边缘竞争下的设计决策:量化、模型和实验
  • 批准号:
    2321463
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Educating Generative Designers in Engineering
教育工程领域的生成设计师
  • 批准号:
    2207408
  • 财政年份:
    2022
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2203080
  • 财政年份:
    2021
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Hierarchical Multidimensional Network-based Approach for Multi-Competitor Product Design
协作研究:基于分层多维网络的多竞争对手产品设计方法
  • 批准号:
    2005665
  • 财政年份:
    2020
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Educating Generative Designers in Engineering
教育工程领域的生成设计师
  • 批准号:
    1918847
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似国自然基金

为了美好的生活而工作:虚拟化团队工作模式下员工工作家庭平衡的新思路
  • 批准号:
    72372056
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
MAP2的m6A甲基化在七氟烷引起SST神经元树突发育异常及精细运动损伤中的作用机制研究
  • 批准号:
    82371276
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
基于“双碳”背景下的“绿色材料与美好生活”主题科普活动及其多媒体传播
  • 批准号:
    52242208
  • 批准年份:
    2022
  • 资助金额:
    10.00 万元
  • 项目类别:
    专项项目
互联网能使生活更美好吗?基于互联网背景的工作-生活渗透对员工幸福感的影响研究
  • 批准号:
    71872130
  • 批准年份:
    2018
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
辣椒胞质雄性不育恢复性主效基因精密图谱分析
  • 批准号:
    30800752
  • 批准年份:
    2008
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

AIGMob: Conditional Generative AI for Fine-grained Urban Mobility Simulation
AIGMob:用于细粒度城市交通模拟的条件生成人工智能
  • 批准号:
    24K02996
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fine-grained music source separation with deep learning models
利用深度学习模型进行细粒度音乐源分离
  • 批准号:
    10107090
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Collaborative R&D
RII Track-4:NSF: Federated Analytics Systems with Fine-grained Knowledge Comprehension: Achieving Accuracy with Privacy
RII Track-4:NSF:具有细粒度知识理解的联合分析系统:通过隐私实现准确性
  • 批准号:
    2327480
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
  • 批准号:
    2348589
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
CAREER: Distances and matchings under the lens of fine-grained complexity
职业:细粒度复杂性镜头下的距离和匹配
  • 批准号:
    2337901
  • 财政年份:
    2024
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了