RUI: Topological Excitations in Spin-1 and Spin-2 Bose-Einstein Condensates
RUI:Spin-1 和 Spin-2 玻色-爱因斯坦凝聚中的拓扑激发
基本信息
- 批准号:2207631
- 负责人:
- 金额:$ 42.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Symmetry is one of the central organizing principles in the natural world. It applies to the most energetic system we can contemplate - the early universe - as well as to some of the least energetic, such as a dilute gas cooled to only tens of billionths of a degree above absolute zero. This tabletop experimental project uses the theme of symmetry to focus on the highly-controllable, low-energy environment of an ultracold gas where direct experimental investigation is possible. Although we often think of symmetry in terms of spatial patterns, such as the regular structure of a crystal, symmetries can also be internal and hidden from view. Their influence in such cases manifests itself in the type and behavior of the particle-like (or "quasi-particle") excitations that can exist within the medium. Examples of quasi-particles that can be observed in an ultracold gas include monopoles, knots, skyrmions, and vortices, each of which has an (as-yet unobserved) analogue in the cosmos. The project will study the creation and time evolution of such quasi-particles in a medium with a broader range of internal symmetries than in previous experiments. The resulting quasi-particle behavior is expected to be more exotic: an ordinary collision between two vortices, for instance, can become one in which connecting filaments develop in the region between them, leaving behind a permanent physical record of the encounter. The program provides opportunities for cutting-edge scientific and technological training for undergraduate students, thereby contributing to the education of the next generation of citizen-scientists.This experimental research program explores the creation and time evolution of topological excitations in optically trapped rubidium-87 Bose-Einstein condensates. The spin degree of freedom in these superfluids leads to a variety of magnetic phases with different internal symmetries. Each phase can host specific topological excitations. The Rb-87 condensate is especially interesting because it has both spin-1 and spin-2 ground state hyperfine manifolds. The spin-1 system is relatively simple, with only two magnetic phases. It provides a convenient springboard from which to understand the spin-2 system, which has five magnetic phases, two of which have entirely discrete symmetries: cyclic-tetrahedral, and biaxial nematic. The spin-2 Rb-87 system is not fully characterized, and immediate experimental goals include (i) determining the ground state magnetic phase, and (ii) understanding the baseline time-evolution of each magnetic phase. Topological excitations in the biaxial nematic and cyclic-tetrahedral phases are of considerable interest as the discrete symmetries permit vortices with fractional circulation. Moreover, collisions between vortices in these phases are expected to yield "rung vortices," which are permanent filaments that bridge the departing vortices. Beyond vortices, the experiments will examine the creation and time evolution of monopoles in the uniaxial nematic phase, which are expected to decay into vortex rings, as well as of exotic skyrmions in the discrete-symmetry magnetic phases. The different excitations will be generated by exposing the condensate to carefully tailored time-dependent magnetic and optical fields, and will be characterized using established imaging techniques. The results, obtained by the PI and his undergraduate collaborators, are expected to contribute directly to our scientific understanding of topological excitations across many branches of physics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称是自然界的中心组织原则之一。它适用于我们所能想到的能量最高的系统——早期宇宙——也适用于一些能量最低的系统,比如稀释的气体,冷却到只比绝对零度高几百亿分之一度。这个桌面实验项目以对称为主题,专注于高度可控、低能量的超冷气体环境,在那里可以直接进行实验研究。虽然我们经常从空间模式的角度考虑对称,比如晶体的规则结构,但对称也可以是内在的,隐藏在视线之外。在这种情况下,它们的影响表现在介质中可能存在的类粒子(或“准粒子”)激发的类型和行为上。可以在超冷气体中观察到的准粒子的例子包括单极子、结、天旋和漩涡,它们中的每一个在宇宙中都有一个(尚未观察到的)类似物。该项目将研究这种准粒子在比以前的实验具有更广泛的内部对称性的介质中的产生和时间演化。由此产生的准粒子行为预计会更加奇特:例如,两个漩涡之间的普通碰撞可能会在它们之间的区域形成连接细丝,并留下永久的物理记录。该项目为本科生提供尖端科技培训的机会,从而为培养下一代公民科学家做出贡献。本实验研究计划探讨光学捕获铷-87玻色-爱因斯坦凝聚体中拓扑激发的产生和时间演化。这些超流体的自旋自由度导致了具有不同内部对称性的各种磁相。每个相可以承载特定的拓扑激励。Rb-87凝聚体特别有趣,因为它同时具有自旋为1和自旋为2的基态超精细流形。自旋-1系统相对简单,只有两个磁相。它提供了一个方便的跳板来理解自旋-2体系,它有五个磁相,其中两个具有完全离散的对称性:循环四面体和双轴向列。自旋为2的Rb-87系统尚未完全表征,当前的实验目标包括(i)确定基态磁相,(ii)了解每个磁相的基线时间演化。在双轴向列相和循环四面体相的拓扑激励是相当有趣的,因为离散对称允许涡与分数循环。此外,在这些阶段,涡旋之间的碰撞预计会产生“阶梯涡旋”,这是连接离开涡旋的永久细丝。除了涡旋之外,实验还将研究单轴向列相中单极子的产生和时间演化,这些单极子预计会衰变成涡旋环,以及离散对称磁相中的奇异天幕。通过将凝析液暴露在精心定制的随时间变化的磁场和光学场中,将产生不同的激发,并使用现有的成像技术进行表征。由PI和他的本科合作者获得的结果,预计将直接有助于我们对物理学许多分支的拓扑激发的科学理解。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Hall其他文献
An Investigation into Concurrent Expectation Propagation
并发期望传播的研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
David Hall;Alex Kantchelian - 通讯作者:
Alex Kantchelian
Generation of Synthetic XML for Evaluation of Hybrid XML Systems
生成用于评估混合 XML 系统的综合 XML
- DOI:
10.1007/978-3-642-14589-6_20 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
David Hall;L. Strömbäck - 通讯作者:
L. Strömbäck
Head-Banging and Body-Rocking
撞头和摇摆身体
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Q. Spender;N. Salt;J. Dawkins;T. Kendrick;P. Hill;David Hall;J. Carnell - 通讯作者:
J. Carnell
Learning from Conformance Quality Failures That Triggered Product Recalls: The Role of Direct and Indirect Experience
从引发产品召回的一致性质量故障中吸取教训:直接和间接经验的作用
- DOI:
10.1111/jscm.12143 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
David Hall;Tracy D. Johnson - 通讯作者:
Tracy D. Johnson
David Hall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Hall', 18)}}的其他基金
(Horticulture) Pheromone of Apple Sawfly: New Tool for Management of a Re-emerging Pest
(园艺)苹果叶蜂的信息素:管理重新出现的害虫的新工具
- 批准号:
BB/X011895/1 - 财政年份:2023
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
New direction in high temperature dielectrics: unlocking performance of doped tungsten bronze oxides through mechanistic understanding
高温电介质的新方向:通过机理理解解锁掺杂钨青铜氧化物的性能
- 批准号:
EP/V053183/1 - 财政年份:2022
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
Aerosol Deposition for Manufacturing and Developing Next Generation Dielectric Charge Storage Devices
用于制造和开发下一代介电电荷存储器件的气溶胶沉积
- 批准号:
EP/S028978/1 - 财政年份:2020
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
Exploitation of interspecific signals to deter oviposition by spotted-wing drosophila
利用种间信号阻止斑翅果蝇产卵
- 批准号:
BB/S005641/1 - 财政年份:2019
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
RUI: Topological Excitations in Spinor Bose-Einstein Condensates
RUI:旋量玻色-爱因斯坦凝聚中的拓扑激发
- 批准号:
1806318 - 财政年份:2018
- 资助金额:
$ 42.61万 - 项目类别:
Continuing Grant
SBIR Phase I: Automated Census of Street Trees from Public Imagery
SBIR 第一阶段:根据公共图像对街道树木进行自动普查
- 批准号:
1648144 - 财政年份:2017
- 资助金额:
$ 42.61万 - 项目类别:
Standard Grant
15AGRITECHCAT4: Early attractants for the major new fruit pest, Drosophila suzukii; a 'super lure'
15AGRITECHCAT4:主要新水果害虫铃木果蝇的早期引诱剂;
- 批准号:
BB/N014006/1 - 财政年份:2016
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
RUI: Experiments with Topological Excitations in Bose-Einstein Condensates
RUI:玻色-爱因斯坦凝聚体中的拓扑激发实验
- 批准号:
1519174 - 财政年份:2015
- 资助金额:
$ 42.61万 - 项目类别:
Standard Grant
Snapshot CMOS: The Future of Hyperspectral Imaging.
快照 CMOS:高光谱成像的未来。
- 批准号:
NE/L012553/1 - 财政年份:2014
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
New approaches for the early detection of tree health pests and pathogens
早期检测树木健康害虫和病原体的新方法
- 批准号:
BB/L012375/1 - 财政年份:2014
- 资助金额:
$ 42.61万 - 项目类别:
Research Grant
相似海外基金
International collaboration on topological magnetic structures and excitations in quantum magnets using neutron scattering
利用中子散射进行量子磁体拓扑磁结构和激发的国际合作
- 批准号:
23KK0051 - 财政年份:2023
- 资助金额:
$ 42.61万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Topological superconductivity and high order non-abelian excitations
拓扑超导和高阶非阿贝尔激发
- 批准号:
2005092 - 财政年份:2020
- 资助金额:
$ 42.61万 - 项目类别:
Continuing Grant
Theoretical studies on couplings between surface Majorana fermions and boson excitations in topological superconductors and superfluids
拓扑超导体和超流体中表面马约拉纳费米子与玻色子激发耦合的理论研究
- 批准号:
19K14662 - 财政年份:2019
- 资助金额:
$ 42.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RUI: Topological Excitations in Spinor Bose-Einstein Condensates
RUI:旋量玻色-爱因斯坦凝聚中的拓扑激发
- 批准号:
1806318 - 财政年份:2018
- 资助金额:
$ 42.61万 - 项目类别:
Continuing Grant
Experimental investigation of topological excitations in magnetic tunneling junctions
磁隧道结拓扑激发的实验研究
- 批准号:
1809155 - 财政年份:2018
- 资助金额:
$ 42.61万 - 项目类别:
Continuing Grant
Novel topological excitations and quantum liquid phases in magnets
磁体中的新型拓扑激发和量子液相
- 批准号:
17K14352 - 财政年份:2017
- 资助金额:
$ 42.61万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Topological Excitations in Quantum Condensates with Complex Order Parameters
具有复杂有序参数的量子凝聚体中的拓扑激发
- 批准号:
17K05554 - 财政年份:2017
- 资助金额:
$ 42.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transfer matrices as the free-energy of topological excitations
传递矩阵作为拓扑激发的自由能
- 批准号:
1820029 - 财政年份:2016
- 资助金额:
$ 42.61万 - 项目类别:
Studentship
Thermal transport by topological excitations in one-dimensional quantum magnets:experiment meets theory
一维量子磁体中拓扑激发的热传输:实验与理论的结合
- 批准号:
325759117 - 财政年份:2016
- 资助金额:
$ 42.61万 - 项目类别:
Research Grants
RUI: Experiments with Topological Excitations in Bose-Einstein Condensates
RUI:玻色-爱因斯坦凝聚体中的拓扑激发实验
- 批准号:
1519174 - 财政年份:2015
- 资助金额:
$ 42.61万 - 项目类别:
Standard Grant