Topological superconductivity and high order non-abelian excitations

拓扑超导和高阶非阿贝尔激发

基本信息

  • 批准号:
    2005092
  • 负责人:
  • 金额:
    $ 61.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Non-technical Abstract:Statistical properties are central to the quantum mechanical understanding of the world. All known particles have so-called Abelian statistics, meaning that result of several consecutive particle exchanges does not depend on the order of the exchanges. Recently it has been proposed that particles with non-Abelian statistics can be realized in some exotic systems, and signatures of simplest non-Abelian particles – Majorana fermions – have been reported. The main driving force in the search for these elusive excitations, apart from scientific curiosity, is a possibility to realize a fault tolerant quantum computer. Qubits based on Majorana fermions are not computationally universal,, which means one cannot perform all the operations with these fault tolerant qubits alone. The main objective of this proposal is to develop a new system where more computationally complete higher order non-Abelian excitations can be realized. Outreach to local Indiana schools and training of students in convergent skills of quantum materials synthesis and characterization, quantum computing and quantum technologies is planned.Technical Abstract:The objective of the proposed research is to develop a system where high-order non-Abelian excitations can be realized and manipulated. Specifically, spin transitions in the fractional quantum Hall effect regime will be explored to realize a reconfigurable network of helical channels with fractionalized charged excitations. Demonstration of induced superconductivity in these channels will be a major milestone. An intricate interplay between superconductivity and integer and strongly interacting fractional quantum Hall states will be investigated. While signatures of Majorana fermions, the simplest type of excitations with non-Abelian statistics, have been seen in recent experiments, current experiments fall short of demonstrating non-Abelian exchange statistics. This proposal will address development of a system where high order non-Abelian excitations (parafermions) can be realized and manipulated. Outreach to local Indiana schools and training of students in convergent skills of quantum materials synthesis and characterization, quantum computing and quantum technologies is planned.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:统计特性是量子力学理解世界的核心。所有已知的粒子都有所谓的阿贝尔统计,这意味着几个连续粒子交换的结果不依赖于交换的顺序。最近有人提出,在一些奇异系统中可以实现具有非阿贝尔统计的粒子,并且已经报道了最简单的非阿贝尔粒子-马约拉纳费米子的签名。除了科学好奇心之外,寻找这些难以捉摸的激发的主要驱动力是实现容错量子计算机的可能性。基于马约拉纳费米子的量子比特在计算上不是通用的,这意味着不能单独使用这些容错量子比特执行所有操作。这个建议的主要目标是开发一个新的系统,在计算上更完整的高阶非阿贝尔激发可以实现。外展到当地的印第安纳州学校和培训学生的收敛技能的量子材料的合成和表征,量子计算和量子technology.Technical摘要:拟议的研究的目标是开发一个系统,高阶非阿贝尔激发可以实现和操纵。具体而言,自旋跃迁的分数量子霍尔效应制度将探讨实现可重构网络的螺旋通道与分数带电激发。在这些通道中诱导超导性的证明将是一个重要的里程碑。超导性和整数和强相互作用分数量子霍尔态之间的复杂相互作用将被研究。虽然马约拉纳费米子的签名,最简单的类型的激发与非阿贝尔统计,已在最近的实验中看到,目前的实验没有证明非阿贝尔交换统计。这项建议将解决一个系统的发展,高阶非阿贝尔激发(parafermions)可以实现和操纵。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Epitaxial growth and magnetic characterization of EuSe thin films with various crystalline orientations
  • DOI:
    10.1063/5.0075827
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Ying Wang;Xinyu Liu;S. Bac;Jiashu Wang;J. Furdyna;B. Assaf;M. Zhukovskyi;T. Orlova;V. Lauter;N. Dilley;L. Rokhinson
  • 通讯作者:
    Ying Wang;Xinyu Liu;S. Bac;Jiashu Wang;J. Furdyna;B. Assaf;M. Zhukovskyi;T. Orlova;V. Lauter;N. Dilley;L. Rokhinson
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonid Rokhinson其他文献

Leonid Rokhinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonid Rokhinson', 18)}}的其他基金

EAGER: BRAIDING: High order non-Abelian excitations for topologically protected qubits
EAGER:BRAIDING:拓扑保护量子位的高阶非阿贝尔激励
  • 批准号:
    1836758
  • 财政年份:
    2018
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Standard Grant
Interplay between strongly correlated quantum Hall states and superconductivity
强相关量子霍尔态与超导之间的相互作用
  • 批准号:
    1610139
  • 财政年份:
    2016
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Standard Grant
Non-Abelian phases and statistics in spin-3/2 hole gases
自旋 3/2 孔气体的非阿贝尔相和统计
  • 批准号:
    1307247
  • 财政年份:
    2013
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Continuing Grant
EAGER: Multifunctional devices based on coupled phase transitions in antiferromagnetic semiconductors
EAGER:基于反铁磁半导体耦合相变的多功能器件
  • 批准号:
    1200014
  • 财政年份:
    2012
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Standard Grant
CAREER: Spin degree of freedom in hole semiconductor nanostructures
职业:空穴半导体纳米结构的自旋自由度
  • 批准号:
    0348289
  • 财政年份:
    2004
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Standard Grant

相似国自然基金

共振价键理论及其在强关联电子体系中的应用
  • 批准号:
    11174364
  • 批准年份:
    2011
  • 资助金额:
    54.0 万元
  • 项目类别:
    面上项目
铁磁现象与超导电性的数学理论
  • 批准号:
    10471050
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Harnessing the Interplay of Superconductivity and Charge Order in Rare-Earth Doped Cuprates for Josephson Junction Applications
利用稀土掺杂铜氧化物中超导性和电荷顺序的相互作用进行约瑟夫森结应用
  • 批准号:
    580931-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Alliance Grants
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子序和费米表面重构之间的联系
  • 批准号:
    RGPIN-2019-06446
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Discovery Grants Program - Individual
Correlation-induced Topological Order and Superconductivity in Organic Nodal Line Semimetal
有机节线半金属中相关诱导的拓扑序和超导性
  • 批准号:
    22K03526
  • 财政年份:
    2022
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
  • 批准号:
    RGPIN-2019-06446
  • 财政年份:
    2021
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
  • 批准号:
    RGPIN-2019-06446
  • 财政年份:
    2020
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Discovery Grants Program - Individual
Elucidating novel physical properties in the coexisting phase of magnetic order and superconductivity
阐明磁序与超导共存相的新物理性质
  • 批准号:
    19K14666
  • 财政年份:
    2019
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exploring connections between superconductivity, unconventional quantum order, and Fermi surface reconstruction
探索超导性、非常规量子级和费米表面重建之间的联系
  • 批准号:
    RGPIN-2019-06446
  • 财政年份:
    2019
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical study of superconductivity accompanied with hexadecapole order on a degenerate-band model
简并能带模型上十六极阶超导理论研究
  • 批准号:
    18K03507
  • 财政年份:
    2018
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of coexistence between superconductivity and magnetic order using rutheno-cuprate magnetic superconductor single crystal
使用钌铜酸盐磁性超导体单晶阐明超导性与磁序的共存
  • 批准号:
    18K04921
  • 财政年份:
    2018
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coexistence of magnetic order and superconductivity in iron-based superconductor studied by nuclear resonant small-angle scattering and Mossbauer Spectroscopy under magnetic fields
磁场下核共振小角散射和穆斯堡尔谱研究铁基超导体磁序与超导共存
  • 批准号:
    16K05446
  • 财政年份:
    2016
  • 资助金额:
    $ 61.14万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了