Spatiotemporal Neural Dynamics of Visual Decisions

视觉决策的时空神经动力学

基本信息

  • 批准号:
    1853630
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

An important aspect of seeing is deciding what to focus on. Such decisions are governed by activity across multiple brain areas. State of the art models of the human visual system tend to treat it as a feedforward machine, but feedback connections are also very important to the efficiency of biological vision. This project will develop mathematical models of the visual system that demonstrate how visual processing, decision making, and attention are intimately linked. These models will tested on three tasks: visually tracing a curve, visual searching a tree, and detecting motion. Results will show the degree to which the human visual system does not simply filter images, but can perform complex decision making tasks. Treatment of blindness with visual prostheses requires continued research on camera-to-brain interfaces that require deep computational knowledge of the brain's visual processing abilities. This project will develop novel and important mathematical insights into the efficiency of the visual system and the underlying neural principles. Results from this work will also be leveraged to develop course material for newly developed major and professional masters in Statistics and Data Science at CU Boulder, training the next generation of data scientists. In addition, this work will augment typical machine learning approaches to modeling human vision, and potentially inspire new technologies for computer-aided vision and categorization. Mathematical theories of vision must be extended to address cognitive tasks that reflect the complexity of the natural world. This project advances this effort for three main reasons. First, it focuses on understanding how the visual cortex participates in decision-making, a ubiquitous cognitive process. Most studies of the visual system consider object filtering and image classification. This project will develop spatially-extended neuronal network models that both process spatiotemporal inputs and interpret them to make complex decisions. These models will reflect the geometry of the visual world that humans observe and interpret, and the resulting theories will help to predict strategies people use to make everyday visual decisions. Second, the project is grounded in mathematical models of the visual cortex we will validate with the data sets of experimental collaborators. These models are amenable to mathematical analysis, so the architecture of neuronal networks can be linked to the cognitive computations they perform, providing testable predictions. This skill set will be crucial for analyzing models of spatiotemporal activity in visual cortex. Trainees will become conversant in techniques for the analysis of nonlinear and stochastic systems as well as probabilistic models of decision-making applicable to many problems in science and industry. The PI will share educational graphics, software, and outreach materials on a webpage to communicate findings widely.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
观看的一个重要方面是决定关注什么,这类决定由多个大脑区域的活动控制。人类视觉系统的最新模型倾向于将其视为前馈机器,但反馈连接对生物视觉的效率也非常重要。该项目将开发视觉系统的数学模型,展示视觉处理,决策和注意力是如何密切相关的。这些模型将在三个任务上进行测试:视觉跟踪曲线,视觉搜索树和检测运动。结果将显示人类视觉系统在多大程度上不只是过滤图像,而是可以执行复杂的决策任务。用视觉假体治疗失明需要继续研究摄像机与大脑的接口,这需要对大脑视觉处理能力的深入计算知识。该项目将开发新的和重要的数学见解的视觉系统的效率和基本的神经原理。这项工作的结果也将被用来为CU Boulder的统计和数据科学新开发的专业和专业硕士课程开发课程材料,培训下一代数据科学家。此外,这项工作将增强典型的机器学习方法来建模人类视觉,并可能激发计算机辅助视觉和分类的新技术。视觉的数学理论必须扩展到解决反映自然世界复杂性的认知任务。本项目推进这一努力有三个主要原因。首先,它侧重于理解视觉皮层如何参与决策,这是一个无处不在的认知过程。视觉系统的大多数研究考虑对象过滤和图像分类。该项目将开发空间扩展的神经网络模型,既处理时空输入,又解释它们以做出复杂的决策。这些模型将反映人类观察和解释的视觉世界的几何形状,由此产生的理论将有助于预测人们用于做出日常视觉决策的策略。其次,该项目基于视觉皮层的数学模型,我们将用实验合作者的数据集进行验证。这些模型可以进行数学分析,因此神经元网络的结构可以与它们执行的认知计算联系起来,提供可测试的预测。这种技能对于分析视觉皮层的时空活动模型至关重要。学员将熟悉非线性和随机系统的分析技术,以及适用于科学和工业中许多问题的决策概率模型。PI将在网页上分享教育图形、软件和外展材料,以广泛交流研究结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic dynamics of social patch foraging decisions
社会斑块觅食决策的随机动力学
  • DOI:
    10.1103/physrevresearch.4.033128
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Bidari, Subekshya;El Hady, Ahmed;Davidson, Jacob D.;Kilpatrick, Zachary P.
  • 通讯作者:
    Kilpatrick, Zachary P.
Uncertainty drives deviations in normative foraging decision strategies.
Analyzing dynamic decision-making models using Chapman-Kolmogorov equations
使用 Chapman-Kolmogorov 方程分析动态决策模型
  • DOI:
    10.1007/s10827-019-00733-5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Barendregt, Nicholas W.;Josić, Krešimir;Kilpatrick, Zachary P.
  • 通讯作者:
    Kilpatrick, Zachary P.
Hive geometry shapes the recruitment rate of honeybee colonies
蜂巢几何形状决定蜂群的招募率
  • DOI:
    10.1007/s00285-021-01644-9
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Bidari, Subekshya;Kilpatrick, Zachary P
  • 通讯作者:
    Kilpatrick, Zachary P
Optimal models of decision-making in dynamic environments
  • DOI:
    10.1016/j.conb.2019.06.006
  • 发表时间:
    2019-10-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Kilpatrick, Zachary P.;Holmes, William R.;Josic, Kresimir
  • 通讯作者:
    Josic, Kresimir
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zachary Kilpatrick其他文献

Zachary Kilpatrick的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zachary Kilpatrick', 18)}}的其他基金

Collaborative Research: CRCNS Research Proposal: Adaptive Decision Rules in Dynamic Environments
合作研究:CRCNS 研究提案:动态环境中的自适应决策规则
  • 批准号:
    2207700
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
International Conference on Mathematical Neuroscience
国际数学神经科学会议
  • 批准号:
    1642544
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Robust spatiotemporal dynamics in multi-layer neuronal networks
多层神经元网络中鲁棒的时空动力学
  • 批准号:
    1615737
  • 财政年份:
    2016
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Architecture for robust spatiotemporal dynamics in neuronal networks
神经网络中鲁棒时空动力学的架构
  • 批准号:
    1311755
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1004422
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship Award

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Multidimensional investigation of cellular dynamics and lineage relationships in the vertebrate neural tube
脊椎动物神经管细胞动力学和谱系关系的多维研究
  • 批准号:
    EP/X031225/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Fellowship
Creating an All-optical, Mechanobiology-guided, and Machine-learning-powered High-throughput Framework to Elucidate Neural Dynamics
创建全光学、机械生物学引导和机器学习驱动的高通量框架来阐明神经动力学
  • 批准号:
    2308574
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Effect of abnormal beta-amyloid on Ca dynamics in neural cells
异常β-淀粉样蛋白对神经细胞钙动力学的影响
  • 批准号:
    23K14744
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Neural circuit architectures that encode three-dimensional locomotor dynamics
编码三维运动动力学的神经电路架构
  • 批准号:
    23KF0294
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
  • 批准号:
    10677342
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Recurrent Circuit Model of Neural Response Dynamics in V1
V1 中神经反应动力学的循环电路模型
  • 批准号:
    10710967
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Label-free, live-cell classification of neural stem cell activation state and dynamics
神经干细胞激活状态和动力学的无标记活细胞分类
  • 批准号:
    10863309
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
Learning Ecosystem Dynamics using Neural Ordinary Differential Equations
使用神经常微分方程学习生态系统动力学
  • 批准号:
    23K14274
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Discovering the dynamics of cloud development through the embedding space of a self-supervised neural network
通过自监督神经网络的嵌入空间发现云发展的动态
  • 批准号:
    2886013
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
NCS-FO: Uncovering Dynamics of Neural Activity of Subjective Estimation of Time
NCS-FO:揭示主观时间估计的神经活动动态
  • 批准号:
    2319518
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了