Non-volatile magnetic memory devices based on field-free spin-orbit torque switching of perpendicularly polarized magnets.
基于垂直极化磁体的无场自旋轨道扭矩切换的非易失性磁存储器件。
基本信息
- 批准号:2208057
- 负责人:
- 金额:$ 34.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Exploitation of spin degree of freedom in solid state systems is key to realizing ultrafast, energy efficient, and densely packed magnetic data storage devices. In these magnetic memory devices, the information is encoded in the magnetization direction of a bistable ferromagnetic thin film layer. To achieve thermally stable and closely packed magnetic bits, a perpendicularly magnetized ferromagnetic layer is preferred. Spin orbit torques, generated by applying a charge current to an adjacent spin source material, has emerged as an efficient means to manipulate or switch the perpendicularly magnetized ferromagnetic layer. However, an external magnetic field is required to achieve deterministic spin orbit torque switching of a perpendicularly magnetized ferromagnetic layer because the charge-current induced spin current in conventional spin-source materials is polarized in the film plane due to the crystal symmetry. This fundamental limitation in conventional spin-source materials has prevented the use of spin orbit torque to achieve field-free deterministic switching of ferromagnets with perpendicular magnetic anisotropy. To overcome this longstanding hurdle in the field of spintronics, this research program proposes to explore low-symmetry crystal structure and topological electronic structure in a special class of materials, namely Weyl semimetals, to demonstrate field-free deterministic magnetization switching of variety of perpendicularly magnetized ferromagnets. A successful outcome of this research program will lead to next generation energy efficient magnetic memory and spin-logic devices. This research program will support the education and training of a graduate student and undergraduate students. Through proposed research activities, the graduate student and undergraduate students will be trained in experimental techniques and skill sets for spin orbit torques for nonvolatile magnetic memory devices. Educational outreach activities and events will be planned to kindle scientific interest and provide interactions and mentorship for middle school and high school students, especially those belonging to underrepresented minorities in southwestern Pennsylvania. Moreover, hands-on experimental demos to explain spin and magnetism-related phenomena will be developed for outreach activities.Utilization of topology and crystal-symmetry in emergent quantum materials, to obtain large current induced spin orbit torques for an energy efficient and field-free manipulation of the magnetization in FM materials, is promising for spintronic device applications. In this context, Weyl semimetals provide a distinct opportunity to obtain highly efficient and unconventional charge to spin conversion owing to strong spin-orbit coupling, symmetry breaking, and topology-based phenomena. The goal of this research program is to demonstrate field-free operation of spin orbit torque-based prototype magnetic memory devices that exploit the interplay of low-symmetry crystal structure and topological electronic structure in Weyl semimetal candidate materials to generate spin current with out-of-plane spin polarization. The main research objectives of this program are to use electric field induced out-of-plane oriented spin current in Weyl semimetals to demonstrate field-free magnetization manipulation in three different classes of ferromagnets with perpendicular magnetic anisotropy, namely: (1) van der Waals based semi-metallic ferromagnets; (2) van der Waals based semiconducting ferromagnets; and (3) a ferromagnetic insulator. In proposed devices, integrated electrostatic gates will be used to tune the charge carrier density in Weyl semimetal thin films, to control magnetism in semiconducting ferromagnets for enhanced spin orbit torque-based device functionalities, and to probe electric-field dependent switching phase diagram to map out the optimal parameter space for low-energy spin orbit torque switching for magnetic memory applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
利用固态系统中的自旋自由度是实现超快、高效节能、高密度磁数据存储设备的关键。在这些磁存储器件中,信息在双稳态铁磁薄膜层的磁化方向上进行编码。为了获得热稳定和紧密排列的磁性钻头,垂直磁化的铁磁层是首选。自旋轨道转矩是通过向相邻的自旋源材料施加电荷电流而产生的,它已成为操纵或切换垂直磁化铁磁层的有效手段。然而,由于传统自旋源材料的电荷电流诱导自旋电流由于晶体对称性而在薄膜平面极化,因此需要外加磁场才能实现垂直磁化铁磁层的确定性自旋轨道转矩切换。传统自旋源材料的这一基本限制阻碍了利用自旋轨道转矩实现垂直磁各向异性铁磁体的无场确定性开关。为了克服自旋电子学领域长期存在的这一障碍,本研究计划提出探索一类特殊材料(即Weyl半金属)的低对称晶体结构和拓扑电子结构,以演示各种垂直磁化铁磁体的无场确定性磁化开关。这项研究计划的成功成果将导致下一代节能磁存储器和自旋逻辑器件。这项研究计划将支持研究生和本科生的教育和培训。通过建议的研究活动,研究生和本科生将在非易失性磁存储器件的自旋轨道扭矩的实验技术和技能方面进行培训。计划开展教育推广活动和活动,以激发科学兴趣,并为初中生和高中生提供互动和指导,特别是那些属于宾夕法尼亚州西南部少数民族的学生。此外,将为外展活动开发动手实验演示,以解释自旋和磁性相关现象。利用新兴量子材料的拓扑结构和晶体对称性,获得大电流诱导自旋轨道转矩,以实现高效节能和无场操纵FM材料的磁化,这在自旋电子器件应用中是有希望的。在这种情况下,由于强自旋-轨道耦合、对称破缺和基于拓扑的现象,Weyl半金属提供了一个独特的机会来获得高效和非常规的电荷自旋转换。本研究计划的目标是演示基于自旋轨道转矩的原型磁存储器件的无场操作,该器件利用Weyl半金属候选材料中的低对称晶体结构和拓扑电子结构的相互作用来产生具有面外自旋极化的自旋电流。本项目的主要研究目标是利用Weyl半金属中电场诱导的面外定向自旋电流来演示三种不同类型具有垂直磁各向异性的铁磁体的无场磁化操作,即:(1)基于范德华的半金属铁磁体;(2)范德华基半导体铁磁体;(3)铁磁绝缘子。在所提出的器件中,集成静电门将用于调整Weyl半金属薄膜中的载流子密度,控制半导体铁磁体中的磁性,以增强基于自旋轨道扭矩的器件功能,并探测电场相关的开关相图,以绘制用于磁存储应用的低能自旋轨道扭矩开关的最佳参数空间。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simranjeet Singh其他文献
A new approach for somnolence detection & analysis based on LabVIEW
嗜睡检测的新方法
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Simranjeet Singh;Dr.Naveen Dhillon;Prof.Karamjeet Singh - 通讯作者:
Prof.Karamjeet Singh
Efficient synthesis and characterization of non-toxic glyphosate derivatives as eco-friendly herbicides
生态友好型除草剂无毒草甘膦衍生物的高效合成和表征
- DOI:
10.1016/j.crgsc.2021.100100 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jatinder Pal Kaur Gill;Simranjeet Singh;N. Sethi;D. S. Dhanjal;A. Mohan;H. Sarma;R. Prasad;Joginder Singh - 通讯作者:
Joginder Singh
Metal organic frameworks for wastewater treatment, renewable energy and circular economy contributions
用于废水处理、可再生能源和循环经济贡献的金属有机框架
- DOI:
10.1038/s41545-024-00408-4 - 发表时间:
2024-11-30 - 期刊:
- 影响因子:11.400
- 作者:
Simranjeet Singh;Nikhita Sivaram;Bidisha Nath;Nadeem A. Khan;Joginder Singh;Praveen C. Ramamurthy - 通讯作者:
Praveen C. Ramamurthy
Green synthesis and characterization of CuO/PANI nanocomposite for efficient Pb (II) adsorption from contaminated water
用于从受污染水中有效吸附 Pb(II)的 CuO/PANI 纳米复合材料的绿色合成与表征
- DOI:
10.1038/s41598-024-81970-2 - 发表时间:
2024-12-28 - 期刊:
- 影响因子:3.900
- 作者:
Hailemariam Assefa;Simranjeet Singh;Nabila Shehata;Nadeem A. Khan;Femi Emmanuel Olu;Praveen C. Ramamurthy - 通讯作者:
Praveen C. Ramamurthy
Toxicity, degradation and analysis of the herbicide atrazine
- DOI:
10.1007/s10311-017-0665-8 - 发表时间:
2017-10-05 - 期刊:
- 影响因子:20.400
- 作者:
Simranjeet Singh;Vijay Kumar;Arun Chauhan;Shivika Datta;Abdul Basit Wani;Nasib Singh;Joginder Singh - 通讯作者:
Joginder Singh
Simranjeet Singh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simranjeet Singh', 18)}}的其他基金
CAREER: Next-generation Logic, Memory, and Agile Microwave Devices Enabled by Spin Phenomena in Emergent Quantum Materials
职业:由新兴量子材料中的自旋现象实现的下一代逻辑、存储器和敏捷微波器件
- 批准号:
2339723 - 财政年份:2024
- 资助金额:
$ 34.49万 - 项目类别:
Continuing Grant
Magnetization manipulation and antiferromagnetic dynamics driven by spin current in Weyl semimetals
外尔半金属中自旋电流驱动的磁化操纵和反铁磁动力学
- 批准号:
2210510 - 财政年份:2022
- 资助金额:
$ 34.49万 - 项目类别:
Continuing Grant
相似国自然基金
污染沉积物AVS对Hg的生物有效性影响机制研究
- 批准号:41001341
- 批准年份:2010
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Time Restricted Feeding in Diet Induced Obesity Improves Aortic Damage and Endothelial Function Through Reducing Th17 Cells
饮食中的限时喂养通过减少 Th17 细胞改善主动脉损伤和内皮功能
- 批准号:
10606103 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10573109 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Fecal Microbiota Transfer Attenuates Aged Gut Dysbiosis and Functional Deficits after Traumatic Brain Injury
粪便微生物群转移可减轻老年肠道菌群失调和脑外伤后的功能缺陷
- 批准号:
10818835 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Microbiome Multi-Omics and Cognitive Decline in Latinos
微生物组多组学和拉丁裔认知能力下降
- 批准号:
10661289 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Gut-brain axis in Alzheimer's disease: translational 7T MRI markers and underlying mechanisms
阿尔茨海默病中的肠脑轴:转化 7T MRI 标记物和潜在机制
- 批准号:
10901013 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Impact of microbiota-derived metabolites on traumatic brain injury-related neurodegeneration
微生物群衍生代谢物对创伤性脑损伤相关神经变性的影响
- 批准号:
10582762 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
FET: Small: AlignMEM: Fast and Efficient DNA Sequence Alignment in Non-Volatile Magnetic RAM
FET:小型:AlignMEM:非易失性磁性 RAM 中快速高效的 DNA 序列比对
- 批准号:
2349802 - 财政年份:2023
- 资助金额:
$ 34.49万 - 项目类别:
Standard Grant
Towards Precision Nutrition for Alzheimer's Dementia Prevention: A Prospective Study of Dietary Patterns, the Gut Microbiome and Cognitive Function
预防阿尔茨海默病的精准营养:饮食模式、肠道微生物组和认知功能的前瞻性研究
- 批准号:
10447872 - 财政年份:2022
- 资助金额:
$ 34.49万 - 项目类别:
The intersection of GLP-1, gut microbiota, and brain connectivity in prodromal Alzheimer’s disease
GLP-1、肠道微生物群和大脑连接在阿尔茨海默病前驱期的交叉作用
- 批准号:
10352498 - 财政年份:2022
- 资助金额:
$ 34.49万 - 项目类别:
Coffee and metabolites modulating the gut microbiome for improved colorectal cancer survival
咖啡和代谢物调节肠道微生物组以提高结直肠癌的生存率
- 批准号:
10409225 - 财政年份:2022
- 资助金额:
$ 34.49万 - 项目类别:














{{item.name}}会员




