The Carleman Contraction Principle for Three-Dimensional Phased and Phaseless Inverse Scattering

三维相相和无相逆散射的卡尔曼收缩原理

基本信息

  • 批准号:
    2208159
  • 负责人:
  • 金额:
    $ 24.66万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The identification from only external measurements of unknown targets that are fully occluded inside a region is a challenging interdisciplinary research effort among mathematicians, physicists, and engineers. Important applications of this field include nondestructive testing, for example, checking for cracks inside a product, seismic exploration, for example, searching for oil under the sea, security, for example, the identification of buried anti-personnel explosive devices, and others. Current, widely used optimization-based methods for such tasks require some a priori knowledge about the true solution, which is not always available, and their computational cost is expensive. This project aims to develop new, theoretically sound techniques that are designed to quickly deliver reliable solutions for estimating occluded targets that are independent of the initial estimates. Both undergraduate and graduate students will be trained through involvement in this research. In this project, data for identifying unknown targets inside a medium will be collected through a measured scattering wave. The methodology to be developed in this work will be able to handle data where the phase may or may not be able to be measured, the latter which occurs in many challenging situations, such as the case of nano imaging, where the wavelength of the incident wave is particularly small. The new methods combine Carleman estimates, the contraction mapping principle, and an algebraic formula to retrieve the lost phase when needed. The use of the contraction mapping principle will guarantee key strengths of the new approach: relaxed requirements on the initial guesses and inexpensive computational cost. These new methods will be applied to partial differential equations that govern wave propagation, including the three-dimensional Helmholtz equation and Maxwell’s system. The new methods will be tested on both simulated and experimental data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
仅通过外部测量来识别区域内完全被遮挡的未知目标对于数学家、物理学家和工程师来说是一项具有挑战性的跨学科研究工作。该领域的重要应用包括无损检测(例如检查产品内部的裂纹)、地震勘探(例如寻找海底石油)、安全(例如识别埋藏的杀伤人员爆炸装置)等。目前,针对此类任务广泛使用的基于优化的方法需要一些关于真实解决方案的先验知识,而这些知识并不总是可用,而且它们的计算成本非常昂贵。该项目旨在开发理论上合理的新技术,旨在快速提供可靠的解决方案来估计独立于初始估计的遮挡目标。本科生和研究生都将通过参与这项研究接受培训。在该项目中,将通过测量的散射波收集用于识别介质内未知目标的数据。 这项工作中开发的方法将能够处理可能无法测量相位的数据,后者发生在许多具有挑战性的情况下,例如纳米成像的情况,其中入射波的波长特别小。新方法结合了卡尔曼估计、收缩映射原理和代数公式,以在需要时恢复丢失的相位。收缩映射原理的使用将保证新方法的关键优势:放宽对初始猜测的要求和廉价的计算成本。这些新方法将应用于控制波传播的偏微分方程,包括三维亥姆霍兹方程和麦克斯韦系统。新方法将在模拟和实验数据上进行测试。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical differentiation by the polynomial-exponential basis
  • DOI:
    10.48550/arxiv.2304.05909
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. M. Nguyen;T. Le;L. Nguyen;M. Klibanov
  • 通讯作者:
    P. M. Nguyen;T. Le;L. Nguyen;M. Klibanov
The Carleman-Newton method to globally reconstruct the initial condition for nonlinear parabolic equations
  • DOI:
    10.1016/j.cam.2024.115827
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Anuj Abhishek;Thuy T. Le;Loc H. Nguyen;Taufiquar Khan
  • 通讯作者:
    Anuj Abhishek;Thuy T. Le;Loc H. Nguyen;Taufiquar Khan
The Carleman Contraction Mapping Method for Quasilinear Elliptic Equations with Over-determined Boundary Data
  • DOI:
    10.1007/s40306-023-00500-w
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    L. Nguyen
  • 通讯作者:
    L. Nguyen
A Carleman-based numerical method for quasilinear elliptic equations with over-determined boundary data and applications
  • DOI:
    10.1016/j.camwa.2022.08.032
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Le;L. Nguyen;H. Tran
  • 通讯作者:
    T. Le;L. Nguyen;H. Tran
Reconstructing a space-dependent source term via the quasi-reversibility method
  • DOI:
    10.48550/arxiv.2210.09112
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Nguyen;Huong T. Vu
  • 通讯作者:
    L. Nguyen;Huong T. Vu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Loc Nguyen其他文献

Patterns of Social Support and LGBTQ + Community Involvement Among Gay, Bisexual, and Other Men Who Have Sex with Men in Australia and Their Effect on HIV-Related Outcomes: A Latent Class Analysis
  • DOI:
    10.1007/s10461-025-04632-y
  • 发表时间:
    2025-01-27
  • 期刊:
  • 影响因子:
    2.400
  • 作者:
    Curtis Chan;Benjamin R. Bavinton;Horas T. H. Wong;John Rule;Loc Nguyen;Steven Spencer;Martin Holt
  • 通讯作者:
    Martin Holt
Enhancing recommendation systems performance using highly-effective similarity measures®
  • DOI:
    10.1016/j.knosys.2021.106842
  • 发表时间:
    2021-02-15
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Amer, Ali A.;Abdalla, Hassan, I;Loc Nguyen
  • 通讯作者:
    Loc Nguyen
Detecting and assessing AI-generated and human-produced texts: The case of second language writing teachers
  • DOI:
    10.1016/j.asw.2024.100899
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Loc Nguyen;Jessie S. Barrot
  • 通讯作者:
    Jessie S. Barrot
Efficient Genetic Algorithm-based LDPC Code Design for IoT Applications
适用于物联网应用的高效基于遗传算法的 LDPC 代码设计
The genomic landscape of estrogen receptor α binding sites in mouse mammary gland
  • DOI:
    10.1371/journal.pone.0220311
  • 发表时间:
    2019-08-13
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Palaniappan, Murugesan;Loc Nguyen;Coartam, Cristian
  • 通讯作者:
    Coartam, Cristian

Loc Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Computational and Theoretical Investigation of Actomyosin Contraction Systems
职业:肌动球蛋白收缩系统的计算和理论研究
  • 批准号:
    2340865
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Continuing Grant
Coordinating tissue surface contraction and basement membrane reorganisation to shape an organ in three-dimensions
协调组织表面收缩和基底膜重组以塑造三维器官
  • 批准号:
    BB/Y002075/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Research Grant
Contraction理論を主軸にした非線形ダイナミクスの解析と設計のシームレス化
基于契约理论的非线性动力学无缝分析与设计
  • 批准号:
    24K00910
  • 财政年份:
    2024
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Muscle contraction and calcium signaling
肌肉收缩和钙信号传导
  • 批准号:
    23K10634
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
2023 Muscle: Excitation-Contraction Coupling Gordon Research Conference and Gordon Research Seminar
2023肌肉:兴奋-收缩耦合戈登研究会议暨戈登研究研讨会
  • 批准号:
    10606049
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
Study of the expansion and contraction of the upper atmosphere realized by the world's first dedicated atmospheric X-ray observation instrument aboard the ISS
国际空间站上的世界首个专用大气X射线观测仪器实现高层大气膨胀和收缩的研究
  • 批准号:
    23H00151
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Is reduction in active force after eccentric contraction alleviated via suppression of passive force reduction?
偏心收缩后主动力的减少是否可以通过抑制被动力的减少来缓解?
  • 批准号:
    23K10714
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mechanotransduction in smooth muscle contraction
平滑肌收缩中的力传导
  • 批准号:
    23K06339
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Doctoral Dissertation Research: Article Contraction as a Reflex of Case Assignment
博士论文研究:文章收缩作为案例分配的反映
  • 批准号:
    2314833
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
    Standard Grant
Non Magnetic MRI Conditional External Defibrillator with Reduced Skeletal Muscle Contraction
减少骨骼肌收缩的非磁 MRI 条件性体外除颤器
  • 批准号:
    10698845
  • 财政年份:
    2023
  • 资助金额:
    $ 24.66万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了