Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
基本信息
- 批准号:2208391
- 负责人:
- 金额:$ 15.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The main objective of this project is to systematically develop a novel class of efficient and high order accurate Runge–Kutta (RK) discontinuous Galerkin (DG) methods for convection-dominated problems and the related applications. The new methods feature improved compactness and local structures. They are expected to be more suitable for parallel computing and implicit time marching in computational fluid dynamics simulation. They have potential applications in diverse areas such as meteorology, oceanography, gas dynamics, aircraft design, hydraulic engineering, oil recovery simulation, and so on. The project will also provide research opportunities for graduate and/or undergraduate students interested in computational mathematics and benefit curriculum development in the PI’s department. In more detail, the PI will investigate a novel approach to reduce the stencil size of the traditional RKDG methods, which typically grows with the number of RK stages. The resulting new methods are referred to as the compact RKDG methods. A comprehensive study of the methods will be carried out in the following directions. Firstly, high order compact RKDG methods will be designed for nonlinear hyperbolic conservation laws. Techniques for oscillation control, implicit time marching, and parallel computing will be investigated. Secondly, a rigorous theoretical framework for convergence, stability, and error analysis of the compact RKDG methods will be established. Thirdly, numerical techniques to preserve the solution bounds and investigate their applications to nonlinear hyperbolic systems in multidimensions will be developed. Finally, in addition to purely convection equations, the methods will be extended to convection-diffusion problems for simulation of viscous flow.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本项目的主要目的是系统地发展一类求解对流占优问题的新型高效高精度Runge-Kutta(RK)间断Galerkin(DG)方法及其应用。新方法的特点是改进了紧凑性和局部结构。它们有望更适合于计算流体力学模拟中的并行计算和隐式时间推进。它们在气象学、海洋学、气体动力学、飞机设计、水利工程、采油模拟等领域具有潜在的应用前景。该项目还将为对计算数学感兴趣的研究生和/或本科生提供研究机会,并使PI系的课程开发受益。更详细地说,PI将研究一种新的方法来减少传统RKDG方法的模板尺寸,模板尺寸通常随着RK阶段的数量而增加。由此产生的新方法被称为紧致RKDG方法。将从以下几个方向对这些方法进行全面研究。首先,设计了求解非线性双曲型守恒律的高阶紧致RKDG方法。将研究振荡控制、隐式时间推进和并行计算技术。其次,为紧致RKDG方法的收敛、稳定性和误差分析建立了严格的理论框架。第三,将发展数值技术来保持解的边界,并研究它们在多维非线性双曲组中的应用。最后,除了纯粹的对流方程外,这些方法还将扩展到对流-扩散问题,以模拟粘性流动。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Generalized Gauss–Radau Projections and Optimal Error Estimates of Upwind-Biased DG Methods for the Linear Advection Equation on Special Simplex Meshes
- DOI:10.1007/s10915-023-02166-w
- 发表时间:2023-03
- 期刊:
- 影响因子:2.5
- 作者:Zheng Sun;Y. Xing
- 通讯作者:Zheng Sun;Y. Xing
Stability of structure-aware Taylor methods for tents
帐篷结构感知泰勒方法的稳定性
- DOI:10.1090/mcom/3811
- 发表时间:2023
- 期刊:
- 影响因子:2
- 作者:Gopalakrishnan, Jay;Sun, Zheng
- 通讯作者:Sun, Zheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zheng Sun其他文献
Synergistic bioconversion of lipids and carotenoids from food waste by Dunaliella salina with fulvic acid via a two-stage cultivation strategy
通过两阶段培养策略,杜氏藻与黄腐酸协同生物转化食物垃圾中的脂质和类胡萝卜素
- DOI:
10.1016/j.enconman.2021.113908 - 发表时间:
2021-04 - 期刊:
- 影响因子:10.4
- 作者:
Xiang Wang;Man-Man Zhang;Si-Fen Liu;Rui-Lan Xu;Jin-Hua Mou;Zi-Hao Qin;Zhi-Gang Zhou;Hong-Ye Li;Carol Sze Ki Lin;Zheng Sun - 通讯作者:
Zheng Sun
A simple implementation of optical Two-Dimensional Fourier Transform Spectroscopy
光学二维傅立叶变换光谱的简单实现
- DOI:
10.1364/iqec.2009.ithf2 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Thomas W. Jarvis;Zheng Sun;Xiaoqin Li - 通讯作者:
Xiaoqin Li
Hydro-mechanical coupled B-spline material point method for large deformation simulation of saturated soils
饱和土大变形模拟的水力耦合B样条质点法
- DOI:
10.1016/j.enganabound.2021.09.023 - 发表时间:
2021-12 - 期刊:
- 影响因子:3.3
- 作者:
Zheng Sun;Kai Liu;Jinglei Wang;Xiaomin Zhou - 通讯作者:
Xiaomin Zhou
Reduction of real gas losses with a DC flow in the practical regenerator of the refrigeration cycle
在制冷循环的实际再生器中通过直流流减少实际气体损失
- DOI:
10.1016/j.applthermaleng.2020.116123 - 发表时间:
2021-01 - 期刊:
- 影响因子:6.4
- 作者:
Qiang Cao;Mingkai Luan;Bin Huo;Zimu Li;Zheng Sun;Peng Li;Yan Wu;Li WEI;Zhenhua Jiang - 通讯作者:
Zhenhua Jiang
Bioactive form of resveratrol in glioblastoma cells and its safety for normal brain cells
胶质母细胞瘤细胞中白藜芦醇的生物活性形式及其对正常脑细胞的安全性
- DOI:
10.31989/ffhd.v3i5.57 - 发表时间:
2013-05 - 期刊:
- 影响因子:1
- 作者:
Liu Jia;Hong Li;Xiao-Xin Sun;Zheng Sun;Li-Li Wang;Xue Song;Shun Shi;Mo-Li Wu;Xiao-Yan Chen - 通讯作者:
Xiao-Yan Chen
Zheng Sun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
随机微分方程的连续级Runge-Kutta型保结构算法研究
- 批准号:11901355
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
多频振荡微分方程Runge-Kutta型数值解的B级数及树理论
- 批准号:11701274
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
二阶随机微分方程的Runge-Kutta方法研究
- 批准号:11301058
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
Volterra泛函微分方程多步Runge-Kutta方法的数值分析及应用
- 批准号:11371302
- 批准年份:2013
- 资助金额:56.0 万元
- 项目类别:面上项目
Runge-Kutta间断Galerkin方法的各向异性自适应方法及其应用
- 批准号:11201242
- 批准年份:2012
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
带Poisson跳随机微分方程的Runge-Kutta方法研究
- 批准号:11126105
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
三角单元谱方法和算子分裂Runge-Kutta方法
- 批准号:11171209
- 批准年份:2011
- 资助金额:43.0 万元
- 项目类别:面上项目
多辛谱与拟谱 Runge-Kutta 型方法的理论与应用研究
- 批准号:11001125
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Eulerian-Lagrangian Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Kinetics and Fluid Models
非线性动力学和流体模型的欧拉-拉格朗日龙格-库塔不连续伽辽金方法
- 批准号:
2111253 - 财政年份:2021
- 资助金额:
$ 15.8万 - 项目类别:
Standard Grant
Advanced research on stochastic Runge-Kutta methods
随机龙格-库塔方法的前沿研究
- 批准号:
23540143 - 财政年份:2011
- 资助金额:
$ 15.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Méthodes de type Runge-Kutta explicites ou implicites pour équations hyperboliques
双曲线方程的显式或隐式龙格-库塔类型方法
- 批准号:
351736-2007 - 财政年份:2007
- 资助金额:
$ 15.8万 - 项目类别:
University Undergraduate Student Research Awards
Runge-Kutta methods for stochastic differential equations
随机微分方程的 Runge-Kutta 方法
- 批准号:
19540139 - 财政年份:2007
- 资助金额:
$ 15.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Software development in numerical methods for differential equations based on Runge-Kutta methods and defect control
基于龙格-库塔方法和缺陷控制的微分方程数值方法的软件开发
- 批准号:
946-2002 - 财政年份:2006
- 资助金额:
$ 15.8万 - 项目类别:
Discovery Grants Program - Individual
Software development in numerical methods for differential equations based on Runge-Kutta methods and defect control
基于龙格-库塔方法和缺陷控制的微分方程数值方法的软件开发
- 批准号:
946-2002 - 财政年份:2005
- 资助金额:
$ 15.8万 - 项目类别:
Discovery Grants Program - Individual
Application of Runge-Kutta methods to computer graphics animation
龙格-库塔方法在计算机图形动画中的应用
- 批准号:
302928-2005 - 财政年份:2005
- 资助金额:
$ 15.8万 - 项目类别:
Postgraduate Scholarships - Master's
Application of Runge-Kutta methods to computer graphics animation
龙格-库塔方法在计算机图形动画中的应用
- 批准号:
302928-2004 - 财政年份:2004
- 资助金额:
$ 15.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Software development in numerical methods for differential equations based on Runge-Kutta methods and defect control
基于龙格-库塔方法和缺陷控制的微分方程数值方法的软件开发
- 批准号:
946-2002 - 财政年份:2004
- 资助金额:
$ 15.8万 - 项目类别:
Discovery Grants Program - Individual
Software development in numerical methods for differential equations based on Runge-Kutta methods and defect control
基于龙格-库塔方法和缺陷控制的微分方程数值方法的软件开发
- 批准号:
946-2002 - 财政年份:2003
- 资助金额:
$ 15.8万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




