Multi-Scale Shape Optimization under Uncertainty
不确定性下的多尺度形状优化
基本信息
- 批准号:25167594
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2006
- 资助国家:德国
- 起止时间:2005-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We will deal with micro-structured materials with macroscopic boundary conditions and stochastic loading in structural mechanics. We will bring together the analytical treatment of multi-scale problems via homogenization, the reliable numerical solution of PDE problems on complex domains described via level sets, and risk neutral and risk averse two-stage stochastic programming approaches. Homogenization and shape optimization in mechanics have already been treated extensively, but usually with deterministic objective functions and without a focus on spatially varying micro-structures. Level set methods are renowned as a flexible tool in shape and topology optimization but usually without accurate, non averaged solution of the involved problems on complex domains. There is a rich theory and algorithmics in two-stage stochastic programming in finite dimensions. But up to now, to the best of our knowledge, not in a PDE optimization context. Uncertain spatial distribution, uncertain modulation of loading and cost functions involving risk of material failure are a characteristic feature in many situations. In particular, we will consider:- two shells with perforated connecting material, loaded in bending, where the locally optimal geometry will vary along the shell,- a simplified model for micro-structured materials in nature with a hard shell filled with porous material, such as bones and micro-structured plant tissue.
我们将讨论结构力学中具有宏观边界条件和随机载荷的微结构材料。我们将汇集多尺度问题的解析处理,通过水平集描述的复杂域上PDE问题的可靠数值解,以及风险中立和风险厌恶两阶段随机规划方法。力学中的均匀化和形状优化已经得到了广泛的研究,但通常具有确定性的目标函数,而没有关注空间变化的微观结构。水平集方法在形状和拓扑优化方面是一种灵活的工具,但通常没有精确的、非平均的复杂域问题的解。有限维两阶段随机规划具有丰富的理论和算法。但到目前为止,据我们所知,还没有在PDE优化上下文中。不确定的空间分布、不确定的载荷调制和涉及材料失效风险的成本函数是许多情况下的特征。特别是,我们将考虑:-两个带有穿孔连接材料的壳,弯曲加载,其中局部最优几何形状将沿壳变化;-自然界中微结构材料的简化模型,其中硬壳填充多孔材料,如骨骼和微结构植物组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Sergio Conti其他文献
Professor Dr. Sergio Conti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Sergio Conti', 18)}}的其他基金
Analytical and numerical aspects of relaxation and regularization in models of crystal plasticity
晶体塑性模型中弛豫和正则化的分析和数值方面
- 批准号:
35737043 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Units
Mathematical Modeling and Simulation of Microstructured Magnetic-Shape-Memory Devices
微结构磁性形状记忆器件的数学建模与仿真
- 批准号:
28321193 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Multiscale folding patterns in thin elastic sheets
弹性薄片中的多尺度折叠图案
- 批准号:
5389403 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Deep-Scale Evolution for Industrial Shape Nesting
I-Corps:工业形状嵌套的深度进化
- 批准号:
2331925 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Large-Scale Models and Algorithms in Diffeomorphic Shape and Image Registration
微分同胚形状和图像配准中的大规模模型和算法
- 批准号:
2309683 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of self-controlled wet-chemical nanomachining to shape and cleave Si crystals on the atomic-layer scale
开发自控湿化学纳米加工以在原子层尺度上成形和切割硅晶体
- 批准号:
22H00187 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)
Direct Fibre Optic Shape Sensing for Large Scale Engineering Structures
用于大型工程结构的直接光纤形状传感
- 批准号:
EP/V020218/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
CAREER: Theory of Membrane Shape Sensing at the Micron Scale
职业:微米级膜形状传感理论
- 批准号:
1945141 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
OAC Core: Small: Shape-Image-Text: A Data-Driven Joint Embedding Framework for Representing and Analyzing Large-Scale Brain Microvascular Data
OAC 核心:小型:形状-图像-文本:用于表示和分析大规模脑微血管数据的数据驱动的联合嵌入框架
- 批准号:
1910469 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
3D printing of micro-scale graded shape memory components for in-vivo actuated medical devices
用于体内驱动医疗设备的微型分级形状记忆组件的 3D 打印
- 批准号:
EP/T005076/1 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Proposal: MRA: Understanding how local-scale controls on litter decomposition shape emergent macrosystem biogeochemical patterns
合作提案:MRA:了解局部规模的凋落物分解控制如何塑造新兴宏观系统生物地球化学模式
- 批准号:
1926413 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Proposal: MRA: Understanding how local-scale controls on litter decomposition shape emergent macrosystem biogeochemical patterns
合作提案:MRA:了解局部规模的凋落物分解控制如何塑造新兴宏观系统生物地球化学模式
- 批准号:
1926482 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Standard Grant
DEFORM: Large Scale Shape Analysis of Deformable Models of Humans
DEFORM:人体变形模型的大规模形状分析
- 批准号:
EP/S010203/1 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Fellowship