New Nonparametric Methods in Instrumental Variable Models
工具变量模型中的新非参数方法
基本信息
- 批准号:251751687
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Fellowships
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2015-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of the proposed research project is the development of new statistical methods for nonparametric analysis of endogenous data. Nonparametric methodology has gained considerable importance since, due to technical progress, increasingly larger data sets are available in econometrics. On the other hand, it is often desirable to model economic relationships in an endogenous way to account for unobservable causal structures. The research project is divided into the following parts: The first goal is to develop a testing procedure to the detect endogenous selection in case of missing data. The test is based on instruments which are correlated to the data but not to the selection mechanism. In particular, an application of this method to survey data sets is planned. The second aim is to develop new nonparametric test and estimation methods in endogenous regression models with instruments. Here, we pursue an optimal estimator for partial information of the structural relationship such as its average value. In addition, we want to develop a testing procedure to justify model simplification, which is completely data driven and does not rely on unknown population parameters. Finally, we focus on the development of confidence bands for the graphical illustration of the estimated structural relationship with its statistical error.
拟议研究项目的目标是为内生数据的非参数分析开发新的统计方法。非参数方法变得相当重要,因为由于技术进步,计量经济学中可获得的数据集越来越大。另一方面,人们往往希望以一种内生的方式对经济关系进行建模,以解释不可观察到的因果结构。研究项目分为以下几个部分:第一个目标是开发一个测试程序,在数据丢失的情况下检测内生选择。测试是基于与数据相关的工具,而不是与选择机制相关的工具。特别是,计划将该方法应用于调查数据集。第二个目标是发展新的内生回归模型的非参数检验和估计方法。在这里,我们寻求结构关系的部分信息的最优估计,如其平均值。此外,我们希望开发一个测试程序来证明模型简化是合理的,这完全是数据驱动的,不依赖于未知的总体参数。最后,我们着重于开发置信带,以图示估计的结构与其统计误差的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Christoph Breunig其他文献
Professor Dr. Christoph Breunig的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
New Development of Nonparametric and Semiparametric Estimation Methods in Economics, Finance and Insurance
经济、金融和保险领域非参数和半参数估计方法的新进展
- 批准号:
23K01340 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Statistical infernce for survival data: nonparametric methods and deep learning
生存数据的统计推断:非参数方法和深度学习
- 批准号:
RGPIN-2019-05574 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Nonparametric statistical methods based on graph theory
基于图论的非参数统计方法
- 批准号:
RGPIN-2022-03264 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Random forests, nonparametric and screening methods
随机森林、非参数和筛选方法
- 批准号:
RGPIN-2016-05702 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
A suite of new nonparametric methods for missing data and data from heterogeneous sources based on the theory of Frechet classes
基于 Frechet 类理论的一套新的用于缺失数据和异构源数据的非参数方法
- 批准号:
EP/W016117/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual