Nonparametric statistical methods based on graph theory
基于图论的非参数统计方法
基本信息
- 批准号:RGPIN-2022-03264
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
High-dimensional data, or data spanning multiple dimensions such as time and space, pose unique challenges for data processing in an era of ever-increasing amounts of data availability. Graph theory can provide a structure of high-dimensional data. Currently, two kinds of graph structures have been studied in nonparametric statistics: minimum spanning tree and shortest Hamiltonian path, where the sum of edge distances attains the minimum among all of the trees or paths. My long-term objective is to explore a new class of nonparametric statistical methods based on graph theory. Over the next five years, I intend to bring graph theory into a fully developed and growing field of nonparametric statistics. With my team of HQP and collaborators, I will explore graph theory for change point detection (the change point refers to a location or time at which observations or data obey two different models: before and after), multiple-sample test, and clustering. My specific short-term objectives are focused on three threads. The first research thread will focus on three types of advances in change point detection: 1) proposing a weighted cusum statistic for univariate data, 2) using approximate shortest Hamiltonian path for high-dimensional data, and 3) developing resonance technology for multiple change points. These new methods will be applied to a library of images that can be considered as high-dimensional data. For example, medical images for functional detection of blood oxygen levels, webcams for motion detection, and Earthorbiting satellites for smoke/fire detection. Second, we will compare multiple independent samples using approximate shortest Hamiltonian path. Here, we will study how to efficiently adjust the experimental alignment or choose partial appropriate results for dependent-sample comparison. These techniques are well suited to address challenges in gene data, where the dimensionality of each observation is in the thousands, but there are only tens or hundreds of instances available for study. For the third area, we introduce a hierarchical clustering without predetermining the number of clusters, where the top cluster is the approximate shortest Hamiltonian path. We will propose an optimal clustering and show it is asymptotically identical to the correct clustering. These techniques will be applied for understanding how the COVID-19 outbreak spreads worldwide. A diverse group of HQP, including at least 1 PDF, 2 PhD, 1 MSc, and 4 UG will be trained as part of this proposal. Findings will have direct application for government agencies charged with disease control, wildfire detection, and medical abnormality detection. The team's research and training activities will thus help Canada make efficient and evidence-based decision in the face of unforeseen situations. For theoretical contributions, this proposal explains why and how graph theory works for high-dimensional data with applications to the three threads.
在数据可用性不断增加的时代,高维数据或跨越多个维度(如时间和空间)的数据对数据处理提出了独特的挑战。图论可以提供高维数据的结构。目前,在非参数统计中研究了两种图结构:最小生成树和最短哈密顿路径,其中边距离的和在所有树或路径中达到最小。我的长期目标是在图论的基础上探索一类新的非参数统计方法。在接下来的五年里,我打算把图论带入一个充分发展和不断发展的非参数统计领域。与我的HQP团队和合作者一起,我将探索图论用于变化点检测(变化点是指观察或数据服从两种不同模型的位置或时间:之前和之后),多样本测试和聚类。我具体的短期目标集中在三个方面。第一个研究线索将集中在变化点检测的三种进展:1)提出单变量数据的加权cusum统计,2)使用高维数据的近似最短哈密顿路径,以及3)开发多个变化点的共振技术。这些新方法将应用于可被视为高维数据的图像库。例如,用于血氧水平功能检测的医学图像,用于运动检测的网络摄像头,以及用于烟雾/火灾检测的地球轨道卫星。其次,我们将使用近似最短哈密顿路径比较多个独立样本。在这里,我们将研究如何有效地调整实验对齐或选择部分合适的结果进行依赖样本比较。这些技术非常适合解决基因数据中的挑战,其中每个观察的维度都在数千个,但只有数十或数百个实例可供研究。对于第三个区域,我们引入了不预先确定簇数的分层聚类,其中顶层聚类是近似最短哈密顿路径。我们将提出一个最优聚类,并证明它与正确的聚类是渐近相同的。这些技术将用于了解COVID-19疫情如何在全球传播。作为该提案的一部分,将培训一组不同的HQP,包括至少1名PDF, 2名博士,1名硕士和4名UG。研究结果将直接应用于负责疾病控制、野火检测和医学异常检测的政府机构。因此,该小组的研究和培训活动将有助于加拿大在面对不可预见的情况时作出有效和基于证据的决策。在理论贡献方面,本提案解释了图论为什么以及如何应用于三个线程的高维数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shi, Xiaoping其他文献
Decisions by Chinese households regarding renting in arable land-The impact of tenure security perceptions and trust
中国家庭关于耕地租赁的决定——权属保障认知和信任的影响
- DOI:
10.1016/j.chieco.2019.101328 - 发表时间:
2020-04-01 - 期刊:
- 影响因子:6.8
- 作者:
Ma, Xianlei;Heerink, Nico;Shi, Xiaoping - 通讯作者:
Shi, Xiaoping
Comparison of three SIS epidemic models: deterministic, stochastic and uncertain
三种 SIS 流行病模型的比较:确定性、随机性和不确定性
- DOI:
10.3233/jifs-18007 - 发表时间:
2018-01-01 - 期刊:
- 影响因子:2
- 作者:
Li, Zhiming;Teng, Zhidong;Shi, Xiaoping - 通讯作者:
Shi, Xiaoping
Pharmacoeconomic evaluation of isavuconazole, posaconazole, and voriconazole for the treatment of invasive mold diseases in hematological patients: initial therapy prior to pathogen differential diagnosis in China.
- DOI:
10.3389/fpubh.2023.1292162 - 发表时间:
2023 - 期刊:
- 影响因子:5.2
- 作者:
Han, Guangxin;Xu, Qing;Lv, Qianzhou;Li, Xiaoyu;Shi, Xiaoping - 通讯作者:
Shi, Xiaoping
Consistent two-stage multiple change-point detection in linear models
线性模型中一致的两阶段多变点检测
- DOI:
10.1002/cjs.11282 - 发表时间:
2016-06-01 - 期刊:
- 影响因子:0.6
- 作者:
Jin, Baisuo;Wu, Yuehua;Shi, Xiaoping - 通讯作者:
Shi, Xiaoping
Two-Sample Tests Based on Data Depth.
- DOI:
10.3390/e25020238 - 发表时间:
2023-01-28 - 期刊:
- 影响因子:2.7
- 作者:
Shi, Xiaoping;Zhang, Yue;Fu, Yuejiao - 通讯作者:
Fu, Yuejiao
Shi, Xiaoping的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shi, Xiaoping', 18)}}的其他基金
Change-point detection - theory and applications
变化点检测 - 理论与应用
- 批准号:
RGPIN-2016-05694 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Change-point detection - theory and applications
变化点检测 - 理论与应用
- 批准号:
RGPIN-2016-05694 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Change-point detection - theory and applications
变化点检测 - 理论与应用
- 批准号:
RGPIN-2016-05694 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Change-point detection - theory and applications
变化点检测 - 理论与应用
- 批准号:
RGPIN-2016-05694 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Change-point detection - theory and applications
变化点检测 - 理论与应用
- 批准号:
RGPIN-2016-05694 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Change-point detection - theory and applications
变化点检测 - 理论与应用
- 批准号:
RGPIN-2016-05694 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于随机网络演算的无线机会调度算法研究
- 批准号:60702009
- 批准年份:2007
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Statistical infernce for survival data: nonparametric methods and deep learning
生存数据的统计推断:非参数方法和深度学习
- 批准号:
RGPIN-2019-05574 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Statistical Inference for Time Series Trend Analysis, and Statistical Modelling Methods with Applications in Health Research and Environmental Science
时间序列趋势分析的非参数统计推断以及在健康研究和环境科学中应用的统计建模方法
- 批准号:
RGPIN-2018-05578 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
- 批准号:
10297407 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
- 批准号:
10466912 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Efficient nonparametric estimation of heterogeneous treatment effects in causal inference
因果推理中异质治疗效果的有效非参数估计
- 批准号:
10610947 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Statistical infernce for survival data: nonparametric methods and deep learning
生存数据的统计推断:非参数方法和深度学习
- 批准号:
RGPIN-2019-05574 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Empirical likelihood and other nonparametric and semiparametric statistical methods for complex surveys, reliability engineering, and environmental studies
用于复杂调查、可靠性工程和环境研究的经验可能性和其他非参数和半参数统计方法
- 批准号:
RGPIN-2017-06267 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual