Quantum Field Theory for Topological Phases of Matter
物质拓扑相的量子场论
基本信息
- 批准号:2210182
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award funds the research activities of Professors Shu-Heng Shao at Stony Brook University.Symmetry has proven, time and again, to be the fundamental guiding principle in theoretical physics. Applications range from the spacetime symmetry in Einstein's theory of special relativity to the rotational symmetry in the quantum-mechanical description of the hydrogen atom and to the classification of the different phases of matter. Symmetry is one of the few universally applicable tools in analyzing quantum systems with strong interactions, and it often leads to far-reaching dynamical consequences. In recent years, the notion of symmetry has been generalized in several different directions, with interdisciplinary applications in high-energy physics, condensed-matter physics, mathematics, and quantum information theory. Professor Shao aims to develop a modern theoretical framework to discuss these new symmetries and uncover hidden symmetries in a diverse set of physical systems. Research along this line advances the national interest by reinforcing fundamental research in the United States and addressing one of the most fundamental and basic issues in the sciences, namely the role of symmetries. This project is also expected to have signiicant broader impacts. Professor Shao will mentor postdoctoral researchers through collaborations on proposed research projects. He also plans to give public lectures and organize summer schools based on his research.More technically, Professor Shao will focus on the interplay between three major kinds of generalized global symmetries: subsystem symmetries, higher-form symmetries, and non-invertible symmetries. Subsystem and higher-form symmetries are novel symmetries that do not act uniformly on the whole physical system, while non-invertible symmetries are associated with symmetry transformations that cannot be undone. Professor Shao will investigate these symmetries within the context of quantum field theory and lattice models. Within the context of subsystem symmetries, he will apply these symmetries to a new quantum phase of matter, the so-called "fracton" phase, and extend the framework of quantum field theory to describe the continuum limit of fractons. He will also study new anomalies associated with these generalized symmetries and derive nontrivial constraints on renormalization-group flows.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项资助石溪大学邵树恒教授的研究活动。对称性一次又一次地被证明是理论物理的基本指导原则。应用范围从爱因斯坦狭义相对论中的时空对称性,到氢原子量子力学描述中的旋转对称性,以及对物质不同相的分类。对称性是分析具有强相互作用的量子系统的为数不多的普遍适用的工具之一,它经常导致深远的动力学结果。近年来,对称性的概念在几个不同的方向得到了推广,在高能物理、凝聚态物理、数学和量子信息理论中得到了跨学科的应用。邵逸夫教授的目标是建立一个现代理论框架来讨论这些新的对称性,并发现各种物理系统中隐藏的对称性。沿着这条线进行的研究通过加强美国的基础研究并解决科学中最基本和最基本的问题之一--对称性的作用--来促进国家利益。预计该项目还将产生重大的更广泛的影响。邵逸夫教授将通过在拟议的研究项目上的合作来指导博士后研究人员。他还计划在他的研究的基础上举办公开讲座和暑期学校。更严格地说,邵逸夫教授将专注于三种主要的广义全球对称之间的相互作用:子系统对称、更高形式的对称和不可逆对称。子系统和更高形式的对称是不统一作用于整个物理系统的新型对称,而不可逆对称与不可撤销的对称变换相关联。邵逸夫教授将在量子场论和晶格模型的背景下研究这些对称性。在子系统对称性的背景下,他将把这些对称性应用于物质的一个新的量子相,即所谓的“分形子”相,并扩展量子场论的框架来描述分形子的连续极限。他还将研究与这些广义对称相关的新反常现象,并推导出对重整化群流的非平凡约束。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shu-Heng Shao其他文献
Shu-Heng Shao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
新型Field-SEA多尺度溶剂模型的开发与应用研究
- 批准号:21506066
- 批准年份:2015
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Twistors and Quantum Field Theory: Strong fields, holography and beyond
扭量和量子场论:强场、全息术及其他
- 批准号:
EP/Z000157/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
CAREER: Elliptic cohomology and quantum field theory
职业:椭圆上同调和量子场论
- 批准号:
2340239 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Research in Novel Symmetries of Quantum Field Theory and String Theory
量子场论和弦理论的新对称性研究
- 批准号:
2310279 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
M-Theory, Cosmology and Quantum Field Theory
M 理论、宇宙学和量子场论
- 批准号:
ST/X000575/1 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Quiver Gauge Theory, String Theory and Quantum Field Theory.
箭袋规范理论、弦理论和量子场论。
- 批准号:
2890913 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Applications of algebraic topology to quantum field theory
代数拓扑在量子场论中的应用
- 批准号:
2882485 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Particle Physics - Theory, Quantum Field Theory
粒子物理-理论、量子场论
- 批准号:
2855977 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship
Interacting observable and measurement in Quantum Field Theory
量子场论中可观测量与测量的相互作用
- 批准号:
2885338 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Studentship














{{item.name}}会员




