Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series

合作研究:高维时间序列的新颖建模和贝叶斯分析

基本信息

  • 批准号:
    2210282
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Every aspect of modern life including economy and finance, communication, and medical records, is associated with large amounts of data on several measurements, often evolving over time. Understanding the progress over time, finding an intrinsic relationship among different variables, and predicting future observations are essential components of decision and policy-making. However, apparent relations between two variables can appear in data caused by their shared association with other components. The principal investigators (PIs) will develop a model to re-express the multi-dimensional time series in independent, one-dimensional, latent time series. The representation will explain the evolution of the data over time and the intrinsic relations present in the component variables. It can also help find a more accurate, efficiently computable prediction formula for future observations by pulling information across different components and time. The approach's simplicity and generality will make it widely applicable and adaptable to diverse fields in economics, finance, social sciences, communications, networks, neuroimaging, and others. The PIs plan to develop free software packages to disseminate the results. They are committed to supporting young researchers and promoting diversity through graduate student training and involvement in the REU program.The developed framework is based on representing an observed multi-dimensional time series as a linear combination of several independent stationary latent processes. The individual latent time series are modeled flexibly with unspecified spectral densities. The PIs will study the conditional independence structure among component time series and the causality of the time series over the temporal domain using a Bayesian approach. They will put independent priors on individual spectral densities through a finite random series prior, and on the matrix of the linear transformation decomposed as a product of a sparse matrix and an orthogonal matrix, the former of which induces a graphical structure for conditional independence among component series. Through this representation, desirable stationarity and causality structures can be imposed. Decoupling through the Whittle likelihood approximation and Hamiltonian Monte-Carlo methods will allow efficient posterior sampling. The causality over nodal time series will be addressed by a Direct Acyclic Graph modeling of the residual process. The formulation seamlessly addresses a mixed frequency sampling situation, difficult to incorporate into competing methods. The developed framework efficiently addresses both temporal and nodal causality respectively by characterization in terms of the Schur-complementation and using a directed acyclic graph, allowing a natural interpretation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代生活的每个方面,包括经济和金融,通信和医疗记录,都与多个测量的大量数据相关,这些数据通常会随着时间的推移而变化。了解一段时间的进展,找到不同变量之间的内在关系,并预测未来的观察结果是决策和政策制定的重要组成部分。然而,两个变量之间的明显关系可能会出现在数据中,这是由于它们与其他组件共享关联造成的。主要研究者(PI)将开发一个模型,以独立的一维潜在时间序列重新表达多维时间序列。该表示将解释数据随时间的演变以及组成变量中存在的内在关系。它还可以通过跨不同组件和时间提取信息来帮助为未来的观测找到更准确,更有效的可计算预测公式。该方法的简单性和通用性将使其广泛适用于经济,金融,社会科学,通信,网络,神经成像等不同领域。研究所计划开发免费软件包,以传播研究结果。他们致力于通过研究生培训和参与REU计划来支持年轻研究人员并促进多样性。所开发的框架基于将观察到的多维时间序列表示为几个独立平稳潜在过程的线性组合。个别潜在的时间序列建模灵活,未指定的谱密度。PI将使用贝叶斯方法研究组成时间序列之间的条件独立结构以及时间序列在时间域上的因果关系。他们将独立的先验通过一个有限的随机序列之前的个人谱密度,并分解为一个稀疏矩阵和一个正交矩阵的产品的线性变换的矩阵,其中前者诱导一个图形结构的组件系列之间的条件独立性。通过这种表示,可以施加期望的平稳性和因果关系结构。通过Whittle似然近似和Hamiltonian蒙特-卡罗方法解耦将允许有效的后验采样。节点时间序列的因果关系将通过残差过程的直接非循环图建模来解决。该公式无缝地解决了混合频率采样的情况下,难以纳入竞争的方法。开发的框架有效地解决了时间和节点的因果关系,分别由舒尔互补和使用有向无环图的表征,允许一个自然的interpretation.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anindya Roy其他文献

Sequence homology and expression profile of genes associated with DNA repair pathways in Mycobacterium leprae
麻风分枝杆菌 DNA 修复途径相关基因的序列同源性和表达谱
  • DOI:
    10.4103/ijmy.ijmy_111_17
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Mukul Sharma;S. Vedithi;Madhusmita Das;Anindya Roy;M. Ebenezer
  • 通讯作者:
    M. Ebenezer
Detection of Quorum Sensing Signals in Gram-Negative Bacteria by Using Reporter Strain CV026
使用报告菌株 CV026 检测革兰氏阴性菌中的群体感应信号
De novo design of functional proteins: Toward artificial hydrogenases.
功能蛋白的从头设计:走向人工氢化酶。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Faiella;Anindya Roy;D. Sommer;G. Ghirlanda
  • 通讯作者:
    G. Ghirlanda
Modulation of cluster incorporation specificity in a de novo iron‐sulfur cluster binding peptide
从头铁硫簇结合肽中簇掺入特异性的调节
  • DOI:
    10.1002/bip.22635
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    D. Sommer;Anindya Roy;A. Astashkin;G. Ghirlanda
  • 通讯作者:
    G. Ghirlanda
Undergraduate Engineering Students’ Types and Quality of Knowledge Used in Synthetic Modeling
本科工科学生综合建模知识的类型和质量
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alejandra J. Magana;Camilo Vieira;Hayden W. Fennell;Anindya Roy;M. Falk
  • 通讯作者:
    M. Falk

Anindya Roy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anindya Roy', 18)}}的其他基金

Collaborative Research: Detecting false discoveries under dependence using mixtures
合作研究:使用混合物检测依赖性下的错误发现
  • 批准号:
    0803531
  • 财政年份:
    2008
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了