Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
基本信息
- 批准号:2210372
- 负责人:
- 金额:$ 12.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The information explosion in many areas of society, from medicine to economics and business to social media, has resulted in pressing questions for modern data science regarding subject-level knowledge, such as in precision medicine, focused marketing, family economics, and many other areas. These include effective methods for data analysis and prediction in important areas of application ranging from privacy protection via differential privacy (DP) to precision medicine and public health disparities focusing on the prediction of epigenetic markers, and to predictions with employment data from the U.S. Bureau of Labor Statistics (BLS). This project aims to develop and employ new methods known as mixed model prediction. Particularly, for the DP application, the investigators will apply the methods to the publicly released 2020 U.S. decennial census; for the BLS application the investigators will target questions regarding volatility during the ongoing COVID-19 pandemic that thus require robust modifications from traditional approaches. The research will be carried out in conjunction with collaborators who are immersed in a particular application area.In this project, the investigators will focus on three major aims: 1) multivariate mixed model prediction (MMP) in genomic prediction problems where correlated DNA methylation markers reflect underlying disease biology and improved prediction accuracy is possible by borrowing strength across this multivariate structure; 2) MMP for differentially private (DP) data in which cluster or grouping identities are contaminated by design and not released to protect privacy; and 3) MMP with non-Gaussian random effects and errors, which greatly can expand the range of circumstances in which MMP can be applied beyond the classical normality assumptions that do not fit many modern datasets. The investigators will develop the required methodology for each aim, study the procedures theoretically, and carry out extensive empirical simulation studies to compare the new methods with other methods. Furthermore, the investigators will work closely with their collaborators in the subject fields on implementing the methods developed in this project to answering practical questions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
从医学到经济,从商业到社交媒体,社会许多领域的信息爆炸,导致了现代数据科学在学科水平知识方面的紧迫问题,例如在精确医学、重点营销、家庭经济学和许多其他领域。这些方法包括在重要应用领域的数据分析和预测的有效方法,从隐私保护到差异隐私(DP),到精准医学和公共卫生差异,重点是表观遗传标记的预测,以及使用美国劳工统计局(BLS)的就业数据进行预测。该项目旨在开发和应用被称为混合模型预测的新方法。特别是,对于DP应用程序,调查人员将把这些方法应用于公开发布的2020年美国十年一次的人口普查;对于劳工统计局的应用程序,调查人员将针对正在进行的新冠肺炎大流行期间的波动性问题,因此需要对传统方法进行强有力的修改。这项研究将与沉浸在特定应用领域的合作者一起进行。在这个项目中,研究人员将集中在三个主要目标上:1)基因组预测问题中的多变量混合模型预测,其中相关的DNA甲基化标记反映潜在的疾病生物学,并且通过在这种多变量结构中借用强度来提高预测精度;2)用于差异隐私(DP)数据的多变量混合模型预测,在该数据中,集群或分组身份被设计污染,并且不被发布以保护隐私;3)具有非高斯随机效应和误差的最小二乘法,它可以极大地扩展最小二乘法的应用范围,使其可以超越经典的正态假设,这些假设不适合许多现代数据集。研究人员将为每个目标制定所需的方法,从理论上研究程序,并进行广泛的实证模拟研究,将新方法与其他方法进行比较。此外,调查人员将与他们在学科领域的合作者密切合作,实施在这个项目中开发的方法来回答实际问题。这个奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thuan Nguyen其他文献
Development and validation of the fecal incontinence and constipation quality of life measure in children with spina bifida.
脊柱裂儿童大便失禁和便秘生活质量测量的开发和验证。
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:6.6
- 作者:
Dana K. Nanigian;Thuan Nguyen;S. Tanaka;Angelo J Cambio;A. DiGrande;E. Kurzrock - 通讯作者:
E. Kurzrock
Simplified partially observed quasi-information matrix
简化的部分观测准信息矩阵
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Thuan Nguyen;Jiming Jiang - 通讯作者:
Jiming Jiang
A Breast Health Educational Program for Chinese-American Women: 3-to 12-Month Postintervention Effect
- DOI:
10.4278/ajhp.130228-quan-91 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:2.7
- 作者:
Lee-Lin, Frances;Thuan Nguyen;Menon, Usha - 通讯作者:
Menon, Usha
On Thresholding Quantizer Design for Mutual Information Maximization: Optimal Structures and Algorithms
互信息最大化的阈值量化器设计:最优结构和算法
- DOI:
10.1109/vtc2020-spring48590.2020.9128966 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Thuan Nguyen;Thinh Nguyen - 通讯作者:
Thinh Nguyen
Mammography Screening of Chinese Immigrant Women: Ever Screened Versus Never Screened
- DOI:
10.1188/15.onf.470-478 - 发表时间:
2015-09-01 - 期刊:
- 影响因子:1.9
- 作者:
Lee-Lin, Frances;Thuan Nguyen;Menon, Usha - 通讯作者:
Menon, Usha
Thuan Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thuan Nguyen', 18)}}的其他基金
Collaborative Research: Subject-level Prediction and Application
合作研究:学科级预测与应用
- 批准号:
1914760 - 财政年份:2019
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Collaborative Research: Prediction and Model Selection for New Challenging Problems with Complex Data
协作研究:复杂数据新挑战性问题的预测和模型选择
- 批准号:
1509557 - 财政年份:2015
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Collaborative Research: Best Predictive Small Area Estimation
协作研究:最佳预测小区域估计
- 批准号:
1118469 - 财政年份:2011
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
- 批准号:
2210208 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: FET: Modernizing Numerical Flow Solvers with Heterogeneous Computing
合作研究:CISE-MSI:DP:FET:利用异构计算实现数值流求解器现代化
- 批准号:
2219543 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: DP: FET: Modernizing Numerical Flow Solvers with Heterogeneous Computing
合作研究:CISE-MSI:DP:FET:利用异构计算实现数值流求解器现代化
- 批准号:
2219542 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
- 批准号:
2241361 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
Collaborative Research: Modernizing Mixed Model Prediction
合作研究:现代化混合模型预测
- 批准号:
2210569 - 财政年份:2022
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
- 批准号:
2025377 - 财政年份:2020
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
- 批准号:
2025459 - 财政年份:2020
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
CCRI: ENS: Collaborative Research: Modernizing gem5: Expanding the Reach of Computer Architecture Simulation
CCRI:ENS:协作研究:现代化 gem5:扩大计算机体系结构仿真的范围
- 批准号:
1925485 - 财政年份:2019
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant
HDR DSC: Collaborative Research: Modernizing Water and Wastewater Treatment through Data Science Education & Research (MoWaTER)
HDR DSC:合作研究:通过数据科学教育实现水和废水处理现代化
- 批准号:
1924146 - 财政年份:2019
- 资助金额:
$ 12.19万 - 项目类别:
Continuing Grant
CCRI: ENS: Collaborative Research: Modernizing gem5: Expanding the Reach of Computer Architecture Simulation
CCRI:ENS:协作研究:现代化 gem5:扩大计算机体系结构仿真的范围
- 批准号:
1925724 - 财政年份:2019
- 资助金额:
$ 12.19万 - 项目类别:
Standard Grant