EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
基本信息
- 批准号:2241361
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This activity is in response to the NSF Dear Colleague Letter: Supporting Transition of Research into Cities through the US ASEAN (Association of Southeast Asian Nations Cities) Smart Cities Partnership (NSF 20-024), in collaboration with the US Department of State. This research seeks to integrate innovations in smart and connected communities with creative gardens within the city alleys of Makassar City, Indonesia via a synergistic collaboration between US and Indonesian teams and a close partnership with Makassar City. Makassar is striving to become a livable world class city for a fast-growing, diverse population of 1.7 million people. The ongoing “Garden Alley” project in the city aims to improve the “livability” of the city, measured by factors including air-quality, heat index, food security, and social interactions. To date, Makassar has implemented 40 gardens within 15 of the city’s sub-districts, covering a sizable portion of the city’s alleys. The goal of this research is to catalyze the transformation of Makassar City’s garden alleys into smart environments by deploying a sensor network at representative green allies and conventional allies to collect data related to air quality, microclimates, and other factors, to analyze the heterogeneous data using machine learning techniques, and to then share the data and its insights with city representatives and specific communities within the city.This transformative research will provide the foundational science and knowledge that are needed to design, optimize, and deploy S&CC technologies within the ASEAN region and beyond. This interdisciplinary research will yield several major innovations: 1) New low-cost, durable, and mobile sensor networks will be designed for air quality and microclimate monitoring in the hot and humid climate in southeast Asian cities. 2) Suitable machine learning techniques will be employed to exploit the multi-dimensional and heterogeneous data collected from both existing infrastructures and new mobile test platforms in Makassar and create intelligent spatio-temporal operational maps of Makassar’s alleys that can be used for various design, planning, and operational decisions by the city. 3) Data-driven city-scale smart operating schemes involving feedback loops will be explored through close engagement with the Indonesian partners. The developed solutions will be highly dynamic yet robust and have the potential to be scaled, as well as transferred to other cities. Additionally, this project will initiate a new collaboration between the US and Indonesia, improving the quality of life in an emerging southeast Asian city, but with potentially broad applicability, and provide a broad range of dissemination activities, involvement of students in international activities, as well as active engagement with local communities and researchers in Indonesia.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
NSF致同事的信:通过美国东盟(东南亚国家联盟城市)智慧城市伙伴关系(NSF 20-024)支持研究向城市过渡。这项研究旨在通过美国和印度尼西亚团队之间的协同合作以及与马卡萨尔市的密切合作关系,将智能和互联社区的创新与印度尼西亚马卡萨尔市城市小巷内的创意花园相结合。马卡萨尔正在努力成为一个宜居的世界级城市,为170万人口的快速增长,多样化的人口。正在进行的“花园巷”项目旨在提高城市的“宜居性”,衡量因素包括空气质量,热量指数,食品安全和社会互动。到目前为止,马卡萨尔已经在城市的15个分区内建立了40个花园,覆盖了城市相当大一部分的小巷。这项研究的目标是通过在代表性的绿色联盟和传统联盟部署传感器网络来收集与空气质量,小气候和其他因素相关的数据,以促进马卡萨尔市花园小巷向智能环境的转变,使用机器学习技术分析异构数据,然后与城市代表和城市中的特定社区分享数据及其见解。这项变革性的研究将提供设计所需的基础科学和知识,在东盟地区内外优化和部署S& CC技术。这项跨学科的研究将产生几个重大创新:1)新的低成本,耐用,移动的传感器网络将被设计用于东南亚城市炎热潮湿气候下的空气质量和微气候监测。2)将采用合适的机器学习技术来利用从马卡萨尔现有基础设施和新的移动的测试平台收集的多维和异构数据,并创建马卡萨尔小巷的智能时空运营地图,可用于城市的各种设计,规划和运营决策。3)将通过与印度尼西亚合作伙伴的密切合作,探索涉及反馈回路的数据驱动的城市规模智能运营计划。开发的解决方案将是高度动态的,但强大的,并有可能被扩展,以及转移到其他城市。此外,该项目将启动美国和印度尼西亚之间的新合作,提高东南亚新兴城市的生活质量,但具有潜在的广泛适用性,并提供广泛的传播活动,学生参与国际活动,该奖项反映了NSF的法定使命,并被认为是值得的。通过使用基金会的知识价值和更广泛的影响审查标准进行评估,
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design methodologies and engineering applications for ecosystem biomimicry: an interdisciplinary review spanning cyber, physical, and cyber-physical systems
生态系统仿生设计方法和工程应用:跨越网络、物理和网络物理系统的跨学科综述
- DOI:10.1088/1748-3190/acb520
- 发表时间:2023
- 期刊:
- 影响因子:3.4
- 作者:Hinkelman, Kathryn;Yang, Yizhi;Zuo, Wangda
- 通讯作者:Zuo, Wangda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wangda Zuo其他文献
Erratum to: A Bayesian Network model for predicting cooling load of commercial buildings
- DOI:
10.1007/s12273-018-0499-8 - 发表时间:
2018-11-23 - 期刊:
- 影响因子:5.900
- 作者:
Sen Huang;Wangda Zuo;Michael D. Sohn - 通讯作者:
Michael D. Sohn
Urban residential building stock synthetic datasets for building energy performance analysis
- DOI:
10.1016/j.dib.2024.110241 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:
- 作者:
Usman Ali;Sobia Bano;Mohammad Haris Shamsi;Divyanshu Sood;Cathal Hoare;Wangda Zuo;Neil Hewitt;James O'Donnell - 通讯作者:
James O'Donnell
Tradeoffs among indoor air quality, financial costs, and COsub2/sub emissions for HVAC operation strategies to mitigate indoor virus in U.S. office buildings
美国办公楼 HVAC 运行策略中室内空气质量、财务成本和二氧化碳排放之间的权衡,以减轻室内病毒
- DOI:
10.1016/j.buildenv.2022.109282 - 发表时间:
2022-08-01 - 期刊:
- 影响因子:7.600
- 作者:
Cary A. Faulkner;John E. Castellini;Yingli Lou;Wangda Zuo;David M. Lorenzetti;Michael D. Sohn - 通讯作者:
Michael D. Sohn
Ecological network analysis of integrated energy systems with Modelica: A novel biomimetic approach for building design and operation
使用 Modelica 进行综合能源系统的生态网络分析:一种用于建筑设计和运营的新型仿生方法
- DOI:
10.26868/25222708.2023.1213 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
K. Hinkelman;Saranya Anbarasu;Wangda Zuo - 通讯作者:
Wangda Zuo
Long-term impact of electrification and retrofits of the U.S residential building in diverse locations
美国不同地区住宅建筑电气化和改造的长期影响
- DOI:
10.1016/j.buildenv.2024.112472 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:7.600
- 作者:
Yizhi Yang;Rosina Adhikari;Yingli Lou;James O'Donnell;Neil Hewitt;Wangda Zuo - 通讯作者:
Wangda Zuo
Wangda Zuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wangda Zuo', 18)}}的其他基金
U.S.-Ireland R&D Partnership: Intelligent Data Harvesting for Multi-Scale Building Stock Classification and Energy Performance Prediction
美国-爱尔兰 R
- 批准号:
2217410 - 财政年份:2022
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
U.S.-Ireland R&D Partnership: Intelligent Data Harvesting for Multi-Scale Building Stock Classification and Energy Performance Prediction
美国-爱尔兰 R
- 批准号:
2110171 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Modernizing Cities via Smart Garden Alleys with Application in Makassar City
EAGER:合作研究:通过智能花园巷实现城市现代化并在望加锡市应用
- 批准号:
2025459 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: IA: Big Data Analytics for Optimized Planning of Smart, Sustainable, and Connected Communities
BIGDATA:协作研究:IA:用于智能、可持续和互联社区优化规划的大数据分析
- 批准号:
1802017 - 财政年份:2017
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: IA: Big Data Analytics for Optimized Planning of Smart, Sustainable, and Connected Communities
BIGDATA:协作研究:IA:用于智能、可持续和互联社区优化规划的大数据分析
- 批准号:
1633338 - 财政年份:2016
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347624 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
- 批准号:
2344215 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333604 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
- 批准号:
2339062 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
- 批准号:
2333603 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
- 批准号:
2347623 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant